
ArX
16th November 2005

This doument is Copyright (C) 2003-2005 Walter Landry, Copyright (C) 2003 MilesBader.This work is free software; you an redistribute it and/or modify it under the terms ofthe GNU General Publi Liense as published by the Free Software Foundation; version 2dated June, 1991.This work is distributed in the hope that it will be useful, but WITHOUT ANY WAR-RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FORA PARTICULAR PURPOSE. See the GNU General Publi Liense for more details.You should have reeived a opy of the GNU General Publi Liense along with this work;if not, write to the Free Software Foundation, In., 59 Temple Plae, Suite 330, Boston, MA02111-1307 USA

1

CreditsArX has been ooperatively developed, and has ontributions from many people and or-ganizations. A hopefully omplete list: Pau Aliagas, David Allouhe, Tim Barbour, StigBrautaset, Jon Buller, Junio C Hamano, Environment Canada - Meteorologial Servie ofCanada, Mike Coleman, Robert Collins, Don Dayley, Alexander Deruwe, Federio Di Gre-gorio, Niholas Dille, Paul Eggert, John Ellson, Robin Farine, Lele Gaifax, Karel Gardas,Johnathan Geisler, Jonathan Geisler, Chris Gray, Jan Harkes, Isamu Hasegawa, Joey Hess,Mikael Hillerstrom, David Kantowitz, Walter Landry, Tom Lord, Andrew Morton, FrankMurphy, Steve Murphy, Gergely Nagy, Matthias Neeraher, Daniele Niolodi, Sott Parish,Chris Paulson-Ellis, Ulrih Pfeifer, Mar Reht, The Regents of the University of California,Kevin Smith, Rihard Stallman, Brue Stephens, Robert W. Anderson, Bryan W. Headley,Martin Waitz, Colin Walters.In addition, ArX makes use of some wonderful tools from the FSF (www.gnu.org) andfour exellent libraries: Boost (www.boost.org), Loki (http://soureforge.net/projets/loki-lib/), Brian Gladman's SHA implementation, and Graydon Hoare's xdelta implementation.The ode in those libraries requires the following aknowledgements:/* Copyright () 2000-2002* CrystalClear Software, In.** Permission to use, opy, modify, distribute and sell this software* and its doumentation for any purpose is hereby granted without fee,* provided that the above opyright notie appear in all opies and* that both that opyright notie and this permission notie appear* in supporting doumentation. CrystalClear Software makes no* representations about the suitability of this software for any* purpose. It is provided "as is" without express or implied warranty. */* Copyright () 1998-2002* Dr John Maddok** Permission to use, opy, modify, distribute and sell this software* and its doumentation for any purpose is hereby granted without fee,* provided that the above opyright notie appear in all opies and* that both that opyright notie and this permission notie appear* in supporting doumentation. Dr John Maddok makes no representations* about the suitability of this software for any purpose.* It is provided "as is" without express or implied warranty.2

// The Loki Library// Copyright () 2001 by Andrei Alexandresu// This ode aompanies the book:// Alexandresu, Andrei. "Modern C++ Design: Generi Programming and Design// Patterns Applied". Copyright () 2001. Addison-Wesley.// Permission to use, opy, modify, distribute and sell this software for any// purpose is hereby granted without fee, provided that the above opyright// notie appear in all opies and that both that opyright notie and this// permission notie appear in supporting doumentation.// The author or Addison-Wesley Longman make no representations about the// suitability of this software for any purpose. It is provided "as is"// without express or implied warranty.

3

Contents
1 Introdution 72 Installation and Versioning 92.1 Building ArX . 92.2 Versioning . 103 Setup 113.1 IDs . 113.2 Arhives . 114 Basi Revision Control 134.1 The First Revision . 134.2 Further Revisions . 144.3 More ompliated hanges . 144.4 Reviewing your work . 154.5 Working with an existing projet . 155 Advaned ArX Conepts 175.1 Arhives . 175.1.1 Branhes and Revisions . 175.1.2 Cahed Revisions . 185.1.3 Remote Arhives . 185.1.3.1 HTTP with webDAV . 195.1.3.2 HTTP with Expliit lists 195.1.3.3 Aessing the Arhives . 195.1.4 Mirrors . 205.1.4.1 Publishing a loal arhive 215.1.4.2 Making a loal opy of a remote arhive 225.2 Branhing and Merging . 235.2.1 Initial Branhing . 235.2.2 Merge . 245.2.3 Replay . 255.2.4 Merging Bak . 275.2.5 Bug Fix Branhes . 285.3 Remote Cooperation and Publishing Your Work 284

5.3.1 Tags . 285.3.1.1 Release Markers . 285.3.1.2 Colletions . 295.3.1.3 Floating Tags . 305.3.1.4 Limitations . 305.3.2 export . 305.3.3 Applying pathes diretly . 315.3.4 Multiple ommiters (a la CVS) . 325.4 Reverting development . 325.4.1 Before you ommit . 325.4.2 After you ommit . 335.4.2.1 Non-destrutive revert . 335.4.2.2 Destrutive revert . 345.5 Properties . 355.5.1 Preserving File Permissions . 355.5.2 User De�ned Properties . 365.5.3 End-of-Line Conversion . 365.6 Hooks . 365.7 Path Logs and Changelogs . 375.8 Making Pathes Bigger or Smaller . 385.8.1 Seletive ommits . 385.8.2 Breaking up pathes . 395.8.3 Agglomerating pathes . 395.9 Working with Large Trees . 395.9.1 arx edit . 395.9.2 link-tree . 405.9.3 Timestamps . 405.10 Cryptographi Cheksums and Signatures 415.10.1 Theory . 415.10.2 Pratie . 425.11 Internationalization . 435.12 Inluding one projet within another . 435.13 Projet Tree Inventories . 435.13.1 Inventory Ids . 435.13.2 Inventory Types . 445.14 Pristine Trees . 455.15 Additional Tools . 456 Beyond this manual 46A Path Algorithm 47B Con�its 49
5

C Sample Merge Sripts 52C.1 Three way merges . 52C.1.1 Meld . 52C.1.2 Xxdi� . 52C.1.3 kdi�3 . 52C.1.4 gvimdi� . 52C.1.5 X/Emas . 53C.2 Path merges . 53

6

Chapter 1IntrodutionArX is a version ontrol system that enables you to do many things that seem di�ultor painful with urrent systems. Suppose you are reating something, be it a program,a doument, or even graphis. As you make modi�ations to the work, you an save thedi�erent revisions into an arhive as you go along. Then, if you deide that something youdeleted is still useful, you an get that old work bak. Sometimes it is just the di�erenebetween two revisions that is interesting. ArX also makes it easy to get just those di�erenes.As the work beomes larger and more ompliated, it spreads into di�erent �les. Some-times you make a number of related hanges to a number of �les, and you want all of thesehanges to be ommitted at the same time. In partiular, some of these hanges may dependupon eah other. ArX supports whole-tree ommits, whih ensure that all of those hangesare grouped together.As the projet matures, the logial struture hanges, so you move �les and diretoriesaround. You �nd it onvenient to use symlinks and permissions. ArX stores all of thatinformation, allowing you to get bak exatly what you put in. Sometimes, you start workingon a hange that you may not be ompletely sure whether it will end up in the �nal reation.ArX makes it easy to reate a branh of your reation that lives in parallel with the mainline of development. One the work on that branh is done, ArX makes it easy to integratethose hanges bak into the main line of development. Or you an just ontinue to work onthe branh and ompletely forget about the �main� line.Finally, you want to release your work upon the world. ArX supports ways to pakageup your reation into simple tarballs. People admire your work, and want to help out. Thisis where ArX's strengths really shine. You an publish your arhive so that other peoplean wath your development, trying out new elements as you reate them. You an use avariety of ordinary servers, inluding an ordinary web server, a web server with webDAV,an ftp server, or an sftp server for seure aess. You an also digitally sign the arhive toredue the risk of someone ompromising the ode and inserted hidden bugs.As time goes on, some of the testers beome developers, sending in small pathes toimprove this or that part. They an work in isolation, reating pathes that they send toyou. You ontinue to work, and ArX makes it easy for independent developers to keep theirtree up to date. They, too, an publish an arhive, and ArX makes it easy to integratepathes from them. You an either take everything that they do, or you an seletivelyapply pathes from among the ones they o�er. As before, you an easily reate branhes to7

try out pathes from many di�erent soures, and only integrate those that pan out.In time, you may tire of your reation, and some of your ontributors may beome moreproli� than yourself. ArX makes it easy for anyone to mirror your arhive, and anyonean reate their own branhes. Anyone an beome a new maintainer. A new person, or anew group, may ome to hold sway over the future of the reation. Their own arhives willbeome the enters of eagerly awaited pathes, while your own fades into history.

8

Chapter 2Installation and Versioning
2.1 Building ArXTo build the ode you will need a deent C++ ompiler. A reent version of g (>=3.2)is reommended. The ode uses autoonf, so a minimal shell is needed. In addition, youmust have Python >=2 (just used for building) and a working gnome-vfs2 install. Finally,ArX uses GNU di�, path and tar. On Windows, you an get these with Cygwin. SeeINSTALL.CYGWIN for more details. On Ma OS X, you an use either pkgsr1 or Fink2.Detailed installation instrutions an be found in INSTALL.GENERIC.One you have it installed and in your path, you an invoke it$ arxand it will give some outputInvoke a sub-ommand of arx.usage: arx ommand [options℄ [arguments℄All ommands take the following options:-h -H --help print a help message speifi to that ommand--silent no output--quiet only output errors--default-output default output--report slightly verbose output--verbose maximal output-- mark the end of optionsThe -- option is useful for expliitly ending the list of options. Thisis useful if a filename, for example, might be mistaken for an option.In addition, you an speify the following options instead of a ommand.-V --version print version info-h --help display this help-H --help-ommands display a list of subommands1http://www.netbsd.org/Doumentation/software/pakages.html2http://�nk.soureforge.net 9

In general, to invoke an ArX ommand, you type arx followed by the ommand, then followedby any options, and �nally any arguments to the ommand.2.2 VersioningYou an �nd out what version of ArX you are running with the -V option:$ arx -VArX 2.2.2Built 00:25:42 Apr 28 2005 with gpg supportCopyright 2001-2005 by various ontributors. See CREDITS for details.This is free software; see the soure for opying onditions.There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR APARTICULAR PURPOSE.Report bugs to <arx-users�nongnu.org>.The version has three parts, a major, minor, and revision number. Two versions that di�eronly in revision number (e.g. 2.0.12 and 2.0.15) should be mostly ompatible. Commandsmay be added, modi�ed, or removed, but the disk format will be the same. A minor versionhange means that the format for anything exept an arhive may have hanged. For exam-ple, you may have to delete and re-get a projet tree. A major version hange means thatthe arhive format has hanged, perhaps requiring you to onvert arhives.

10

Chapter 3Setup
3.1 IDsThe �rst thing you should do is ome up with an ID for yourself. ArX uses it to identifywho ommitted a hange to an arhive, and who is holding loks on an arhive. You an useyour name or a pseudonym, as in$ arx param id �Don Quixote de la Manha�The argument is quoted beause there are spaes in the name. To see what your ID is, youan use param id without arguments$ arx param idDon Quixote de la Manha3.2 ArhivesNow you need a plae to store all of the revisions you are going to be making. This is alledan arhive, and you reate one with the make-arhive ommand. You need to know twothings before you reate the arhive: what to all it and where it will be. You an namean arhive whatever you like, as long as it does not have a slash �/� or olon �:� inside it.The usual hoie follows a syntax that looks like an email address followed by a furtherdelineation. For exampledoyote�example.org--arhiveThe advantage of using an email address is that it is already unique, so you won't havelashes with another person. You will probably �nd yourself reating di�erent arhives fordi�erent purposes, so it is wise to put some sort of quali�er at the end of the name of thearhive. For example, if you want to have an arhive for your work at Yoyodyne In. andanother for your spare time, you might hoose arhive names suh asdoyote�example.org--yoyodynedoyote�example.org--freetime 11

Now that you have a name for your arhive, you need a plae to put it. Any spare diretorywith a fair amount of spae will do. If you have deided to put the arhive in the diretoryarhive, then you make the arhive with make-arhive$ arx make-arhive doyote�example.org--arhive arhiveNote that you should never have to look inside that arhive diretory.The last thing that you should do is set up a default arhive. You just use the symboliname of the arhive$ arx param default-arhive doyote�foobar.org--arhiveYou are now set up for basi revision ontrol.

12

Chapter 4Basi Revision Control
4.1 The First RevisionArX works on entire projet trees, so everything has to be stored within a diretory. Thisdi�ers from some simpler revision ontrol systems suh as RCS whih an operate on just one�le. So we need to reate a diretory to store our �les. We will illustrate with the simplestshell sript, Hello world. We reate the diretory$ mkdir helloand then reate the program$ d hello$ eho "eho Hello, World" > HelloNow we are going to store this masterpiee in ArX. We �rst have to initialize the tree, lettingArX know that we are reating a new projet. We will all the projet "hello".$ arx init helloThis reates an _arx sub-diretory in the urrent diretory. You should never need to lookat things in the _arx diretory. It also automatially reursively adds all of the paths (�lesand diretories) in the diretory to the list of paths that will get stored in the arhive.You an now store the �rst revision in your arhive by running$ arx ommit -s �First revision�If later you deide that you want to get bak this initial revision, you use get$ arx get hello,0This is the initial revision, so it has �,0� appended to the end of the revision. Later revisionswill have �,1�, �,2�, et. appended. 13

4.2 Further RevisionsNow suppose that you have made some modi�ations to your projet. Commiting the hangesis just$ arx ommit -s �Fixed foo to do bar instead of baz�You an ontinue this simple sheme ad in�nitum as long as you don't need to add, delete,or move �les.4.3 More ompliated hangesSooner rather than later, you will want to add more �les. ArX requires you to expliitlynotify ArX every time you add a �le. You do this with the add ommand. For example, ifyou reated a �le named �Goodbye�, you an add it by typing$ arx add GoodbyeThis works on diretories as well, although not reursively by default. If you do not expliitlyadd a �le, then ArX will not store it or any modi�ations into the arhive. If you do notadd a diretory, any hanges that our in that diretory will not be reorded.Similarly, if you later deide that you don't need �Goodbye� anymore, you an delete itwith the ommand$ arx rm Goodbyearx rm supports most of the same semantis as rm(1), so you an reursively and intera-tively delete �les and diretories. Finally, you an move �les$ arx mv Goodbye Goodbye.sharx mv supports most of the semantis of plain old mv(1), so you an move a number of �lesinto a subdiretory$ arx mv foo bar baz bat/If you forget to use the ArX funtions to delete and move �les and diretories, ArX willnot let you ommit. You an use the tree-lint to see what kinds of problems might ariseduring ommit.$ arx tree-lintSome of the things that tree-lint omplains about are only warnings that will not stop aommit. For example, if you forget to add a �le. In general, if you have been doing a lot ofmodi�ations to the tree, it is wise to run tree-lint before ommitting.If you have made so many hanges over suh a long time that you have forgotten exatlywhat you have done, then$ arx diffwill tell you what paths have hanged sine the last time you ommitted.14

4.4 Reviewing your workYou an get a terse listing of the revisions you have ommitted witharx logAlternately,arx log --formattedwill give a more detailed piture. These ommands look in the projet tree for the informa-tion. If you are not in the projet tree, thenarx log --remotewill instead query the arhive. Given this listing of revisions, you an get a partiular revision(e.g. revision 12) witharx get hello,12This puts revision 12 into the diretory hello.12. Note that this is di�erent from CVS,beause you didn't have to expliitly tag a revision in order to get a partiular snapshot ofthe tree. Every revision is akin to a snapshot.4.5 Working with an existing projetSuppose your trusty sidekik Sanho Panza has set up an arhive atftp://ftp.example.org/~spanza/arhive/You an register that arhive with the arhives ommandarx arhives -a ftp://ftp.example.org/~spanza/arhive/ArX will retrieve the name of the arhive from the arhive itself. If Sanho Panza named thearhive spanza�example.org when he reated it, then running arhives without argumentsshould give you output like$ arx arhivesspanza�example.orgftp://ftp.example.org/~spanza/arhiveHowever, you don't need to expliitly register the arhive. ArX will do it for you wheneveryou aess the arhive (e.g. when using browse or get). So to see what is there, you anrun arx browse ftp://ftp.example.org/~spanza/arhive/15

The trailing slash �/� is important. ArX assumes that everything past the last slash is abranh name, so without the trailing slash ArX would be looking for the arhive branh inan arhive loated at ftp://ftp.example.org/~spanza/.Now that the arhive is registered, you an use the arhive name instead of URL's. Forexample, to get the windmill projet from that arhive, you an usearx get spanza�example.org/windmill windmillBut using the full URL will always workarx get ftp://ftp.example.org/~spanza/arhive/windmill windmillOne you have this projet, you an keep up to date with any hanges to the projet witharx merge --dir windmillThe merge ommand is analogous to the update ommand in CVS, although merge is muhmore powerful. You an set up ArX to pop up a graphial merge tool in ase of on�its.See Appendix C for details.

16

Chapter 5Advaned ArX ConeptsThe preeding hapters gave a basi introdution to working with ArX. However, some ofthe things that make ArX so useful neessarily beome somewhat speialized. So it has beenbroken down into separate setions here. Eah setion should be fairly independent.5.1 ArhivesArX uses arhives to store all of the revisions of a projet. As explained earlier, arhives havea symboli name (like doyote�yoyodyne), and an address (like /home/doyote/yoyodyne).You an have multiple arhives on the same mahine or multiple mahines. make-arhivereates arhives and registers them for you. arhives lists, registers and unregisters arhives.If you need to move an arhive, you only need to physially move or opy the arhive diretoryto its new loation and re-register the arhive.Most of the time, you do not have to register arhives with arhives. You an browsearhives and get revisions by speifying the omplete URI, and that will register the arhivefor you.5.1.1 Branhes and RevisionsWithin an arhive are di�erent branhes. Branhes are a basi way of splitting up work sothat people are free to work out improvements without diretly upsetting the main devel-opment branh. Branhes have a hierarhial struture, and an be any number of levelsdeep. For example, g developers might set up a branh alled g. Someone else mightbe working on a new parser, so they make a branh alled g.new-parser. During theourse of their work, the developers working on the new parser might make a branh for im-proving ompilation speed alled g.new-parser.speed. They might make another branhfor handling java and all it g.new-parser.java. The branh names are purely for hu-man onsumption, and do not enfore any real relation between branhes. For example,g.new-parser.java might be ompletely unrelated to g or the new parser at all.Within eah branh are revisions. These are numbered starting from zero. A revision isa snapshot of the state of a projet. For example, revision 66 might be the projet just aftersome speed improvements have been implemented. Revision 75 might be the projet one17

all of the bugs in the speed improvements are worked out. Revision 76 might be the projetone the dos are updated to re�et the new speedups. And so on. A revision is spei�edwith a leading omma �,� to distinguish it from a branh. So revision 66 of g.new-parserwould be g.new-parser,66.To summarize, the omplete syntax for speifying a projet isarhive/branh.subbranh,revisionIf you have de�ned your default arhive, you an omit the arhive. There are a number ofases where you may want to speify just an arhive. If it is possible for the arhive to beonfused with a branh or revision, you must follow the arhive name with a slash �/�. Forexample, to browse the ontents of arhive spanza�example.orgarx browse spanza�example.org/Otherwise, ArX will think that you are trying to browse the spanza�example.org branhin your default arhive.5.1.2 Cahed RevisionsArx does not store the full text of all revisions in the arhive. Instead, it urrently stores the�rst revision and subsequent pathes. This an be quite slow. For example, if you have 1000revisions, eah time you get the latest revision, ArX has to get and apply 999 pathes to getto the most reent revision. For that reason, you an ahe revisions in the arhive. Running�arhive-ahe --add� will reate a pristine tree of the latest revision and store it in thearhive. This has to do all of the pathing, but subsequent get's won't have to. This usesup additional spae in the arhive, beause it is storing a tarball of an entire projet treeand all of the pathes. If you need to relaim the spae, �arhive-ahe --delete� willremove it. Finally, �arhive-ahe� without any options will tell you whih revisions havebeen ahed.5.1.3 Remote ArhivesRemote arhives are simply arhives that are not aessible through the loal �lesystem. Inpratie, remote arhives are the prinipal method for distributing software through ArX.For example, remote arhives an be pushed to (e.g. mirroring a loal arhive to a webserver) or pulled from (e.g. to download software from that web server). ArX uses thegnome-vfs libraries to aess the remote arhives over standard networking protools. Thatmeans that if gnome-vfs an see an arhive, then ArX an as well. In partiular, ArX anaess remote arhives using http with webDAV, ftp, ssh, and sftp1. In addition, if you annot install webDAV, there is an option to use http with expliit lists.The �rst thing that you have to do is set up the (s)ftp, ssh, or http server on the remotemahine. ArX does NOT have to be installed.1For sftp to work, you must have auto-login enabled.18

5.1.3.1 HTTP with webDAVThere are two ways that http aess an work. ArX needs to list diretories, and plain httpdoes not provide that. HTTP with webDAV is the reommended and most reliable way.To on�gure webDAV with apahe, this usually involves installing the mod_dav module.This will work with Apahe 1.3 or later. It does not require Apahe 2. Then you have toadd something like the following to the onf �le for apahe:<Diretory /home/*/publi_html>DAV OnAllowOverride FileInfo AuthConfig LimitOptions MultiViews Indexes SymLinksIfOwnerMath InludesNoExe<Limit GET POST OPTIONS PROPFIND>Order allow,denyAllow from all</Limit><Limit PUT DELETE PATCH PROPPATCH MKCOL COPY MOVE LOCK UNLOCK>Order deny,allowDeny from all</Limit></Diretory>You might have to hange the �rst line of that to make it point to where your arhives are.5.1.3.2 HTTP with Expliit listsIf you are unable to install webdav support on your server, you an also generate .listing�les that ontain a listing of a diretory. You do this with update-listing. For example,one you have reated an arhive, you an tell ArX to keep the .listing �les to the arhiveup-to-date with a ommand likearx update-listing -a sftp://dquixote�example.org/publi_html/arhiveFor long lateny links, this an signi�antly inrease the time to ommit and mirror. If youno longer need to keep the .listing �les up-to-date, thenarx update-listing -d sftp://dquixote�example.org/publi_html/arhivewill stop ArX from updating them.5.1.3.3 Aessing the ArhivesTo aess arhives, just use the ordinary URI notation. Spei�ally19

ftp://[user�℄host/dirsftp://[user�℄host/dirssh://[user�℄host/dirhttp://[user�℄host[:port℄/dirhttps://[user�℄host[:port℄/dirdav://[user�℄host[:port℄/dir2ArX saves the loations in your .arx diretory. For ftp and http, passwords are stilltransferred in plain text. So seurely writing to remote arhives requires you to use sftp,ssh, or https. Note that the same arhive an be registered using di�erent protools.For example, suppose that you have a website on the mahine example.org rooted at/home/doyote/publi_html/arhive. Through a web browser, it appears at http://example.org/~doyote/arhive.Sine you an log in to the sftp server, you an register the arhive asarx arhives --add sftp://doyote�example.org//home/doyote/publi_html/arhivewhile someone who wanted just read aess ould register it asarx arhives --add http://example.org/~doyote/arhiveNote that ArX automatially gets the name of the arhive from the arhive itself. In fat,in general you do not have to register arhives at all, sine ArX will automatially registerthem for you. For example, to browse the previous arhive, you an typearx browse http://example.org/~doyote/arhive/The trailing slash �/� is required so that ArX doesn't look for an arhive athttp://example.org/~doyote/with a branh named arhive.5.1.4 MirrorsSuppose that you do all of your work on a laptop, but you also have aess to a web server.To share your work with the world, you want to opy your laptop arhive to the web server.Alternately, suppose that someone else has published an arhive. You would like to havea loal opy on your laptop for when you don't have aess to the network. You an usemirrors to manage opies of arhives.Mirrors are not true opies, in that there are ertain restritions when using them. Inpartiular, you an not ommit new revisions to an arhive. This prevent the ase whereone person ommits a revision to the master arhive, and another person ommits a revisionwith the same name to the mirror. Having two di�erent revisions with the same name butdi�erent ontents will ause onfusion, so ArX prevents it.2This is only to aess webdav repositories using gnome-vfs 2.10 or greater. Previous versions of gnome-vfsjust use the http:// notation. 20

5.1.4.1 Publishing a loal arhiveAs a onrete example, suppose you have an arhive loally and a remote mahine that youan aess through sftp whih also serves as a web server. Then the loal arhive nameddoyote�example.org-arhive might be atfile:///home/doyote/arhive/The remote arhive ould be atsftp://doyote�example.org//home/doyote/publi_html/arhive/and it an also be aessed by the web athttp://example.org/~doyote/arhive/To reate the remote mirror, it isarx make-arhive --mirror doyote�example-arhive \sftp://doyote�example.org//home/doyote/publi_html/arhiveSine the remote arhive will also be available over plain http, you need to tell ArX to updatethe .listing �lesarx update-listing -a sftp://doyote�example.org//home/doyote/publi_html/arhiveNow if you look at the arhive registration, you will see$ arx arhives doyote�example.org-arhivedoyote�example.org-arhivefile:///home/doyote/arhivesftp://doyote�example.org//home/doyote/publi_html/arhiveSo the single arhive doyote�example.org�arhive has two loations assoiated with it. The�rst listed loation will always be the one used for get, ommit, et., unless you spei�allyuse the other uri. For example,arx get doyote�example.org-arhive/foowill use the loal (�le:///) arhive to omplete the get. If you want to test the mirror, youan use the uri instead of the namearx get sftp://doyote�example.org//home/doyote/publi_html/arhive/fooand ArX will get the foo projet from the remote mirror.Finally, to populate the mirror, you use the mirror ommand and speify the soure anddestination 21

arx mirror doyote�example-arhive/ \file:///home/doyote/arhive \sftp://doyote�example.org//home/doyote/publi_html/arhiveThis an get quite tedious to type, so you an shorten the uri's as long as they are unique.That isarx mirror doyote�example-arhive/ file sftpwill do the same thing, as will evenarx mirror doyote�example-arhive/ f sBy default, ArX will mirror everything from one arhive to the other. You an restrit whatwill be mirrored by adding it to the arhive name. So if you have the projets foo and bar,arx mirror doyote�example-arhive/foo file sftpwill only mirror projet foo.Finally, for other people to aess it, they will register the arhive with the http uriarx arhives -a http://example.org/~doyote/arhiveYou an also register this loation, in whih ase the output of arx arhives would bedoyote�example--projetsfile:///home/doyote/arhivesftp://doyote�example.org//home/doyote/publi_html/arhivehttp://example.org/~doyote/arhiveThis might be useful to hek that the .listing �les have been updated orretly.5.1.4.2 Making a loal opy of a remote arhiveAnother ase where mirroring might ome in handy is if there is a remote mirror that youwant to make a loal opy of. Working from the above example, suppose you are SanhoPanza, and you want to have a loal opy of Don Quixote's arhive. You might do thisso that you don't have to wait on the network, or you might want to work where you aredisonneted from the network entirely. So you would start with an arhive registration likedoyote�example-arhivehttp://example.org/~doyote/arhiveTo make a loal arhive, you might do something likearx make-arhive --mirror doyote�example.org-arhive \file:///home/spanza/dquixote-arhive22

Then populating it would bearx mirror doyote�example.org-arhive/ http fileThis will give you an arhive registration likedoyote�example-arhivehttp://example.org/~doyote/arhivefile:///home/spanza/dquixote-arhiveBut this is not quite what you want. When ArX does a get, it will default to looking atthe remote arhive. To make ArX default to looking at the loal mirror, you an use the--make-default option to arhivesarx arhives --make-default doyote�example--projets fileOne again, you an abbreviate the uri. This will put the file:/// uri �rst, so the regis-tration will beomedoyote�example--projetsfile:///home/spanza/dquixote-arhivehttp://example.org/~doyote/arhive5.2 Branhing and MergingSuppose someone (Bob) is writing a sorting program, suh as the unix sort(1). Bob juststarted, so he has only implemented a generi bubble sort. That works well enough for Bob,so he is now onentrating on improving the option handling. Alie, on the other hand, likesBob's program, but needs a faster sorting algorithm. So she wants to work on improvingthe sorting algorithm while Bob works on the option handling. Eventually, either Bob willmerge Alie's work bak into the original program, or Alie will merge Bob's work into herversion. ArX handles this sort of situation with branhes and merges.5.2.1 Initial BranhingSo let's start again from the beginning. Bob has written a sorting program and published itas bob�foo.org/sort.bob. It urrently has 23 revisions from bob�foo.org/sort.bob,0 tobob�foo.org/sort.bob,22., as shown in Figure 5.1.Alie wants to start from the most reent revision, 22, to implement the new sortingalgorithm. To do that, she reates a branh in her own arhive alie�bar.org. She will reatea branh alled sort.bob.quik to denote that she is working on a quiksort implementation.To reate the branh, she starts by typingarx get bob�foo.org/sort.bob sort_quikd sort_quikarx fork alie�bar.org/sort.bob.quik23

...

bob@foo.org/sort.bob,0

bob@foo.org/sort.bob,1

bob@foo.org/sort.bob,2

bob@foo.org/sort.bob,22Figure 5.1: Bob's original revisions
alice@bar.org/sort.bob.quick,0

alice@bar.org/sort.bob.quick,1

alice@bar.org/sort.bob.quick,2

alice@bar.org/sort.bob.quick,3

...

bob@foo.org/sort.bob,22

bob@foo.org/sort.bob,2

bob@foo.org/sort.bob,1

bob@foo.org/sort.bob,0

Figure 5.2: Alie's branhThis will reate a diretory sort_quik with the new branh, but not ommit anything tothe arhive. To atually reate the new branh in the arhive, she just ommitsarx ommit -s �branh to implement quiksort�Now she an use the usual ommands to make suessive revisions, giving Figure 5.2.5.2.2 MergeSo Alie is happily haking along, ripping out the bubble sort and implementing the newquik sort. In the meantime, Bob has not been idle. He implemented some fany new optionparsing with �ve new revisions, 23, 24, 25, 26 and 27. Alie is not entirely sure what Bobhas been up to, but she an �nd out with missing. She typesarx missing bob�foo.org/sort.bob 24

and ArX will print out all of the pathes that she doesn't have yet (pathes 23, 24, 25, 26,and 27). She looks at those hanges, and deides to inorporate all of those hanges into herbranh. So she merges those hanges inarx merge bob�foo.org/sort.bobThere are a number of ways that hanges an on�it (see Appendix B). By default, ArXuses a three-way merge to apply the hanges in Bob's tree to Alie's tree. ArX an alsomerge by looking at the pathes that Bob has applied to make bob�foo.org/sort.bob,22beome bob�foo.org/sort.bob,27, gathering it into one big path and applying it to Alie'ssort_quik tree.arx merge --algo path bob�foo.org/sort.bobEither method is fairly sophistiated, handling a number of ases automatially. For every-thing but modi�ation of �le ontents (i.e. renames, deletes, metadata hanges), the twomethods are idential. For example, even if a �le has moved, ArX will still know whih �leto modify. But sometimes there are problems. Bob may have made inompatible hanges toa �le that Alie modi�ed.The three-way merge is slightly better at avoiding on�its, so it is the default. Butwhen on�its are inevitable, the real di�erene between the two methods is how on�itsare resolved. When there are on�its in �le ontents, the three-way merge method will leavefour �les in the projet tree: The original tree �le, the sibling �le, the anestor �le, and theoutput of di�3 when it tried to merge the three. The di�3 �le has inline on�it markerssimilar to what CVS on�its give. To resolve the on�it, you an edit the di�3 output andremove the other three �les. You an also run a GUI three-way merge tool on the three �les:tree, anestor, and sibling. You an even have ArX pop up a merge tool automatially whenit detets on�its. See Appendix C for details.When there are on�its using the big umulative path method, ArX leaves three �les:the original tree �le, a modi�ed �le with as many of the hunks of the path applied aspossible, and a �le with the rejeted hunks.For any on�it, ArX will print out an error message detailing what went wrong. Aliean retrieve these messages with arx resolve. One Alie leans up all of the problems,she must tell ArX that the on�its have been resolved with arx resolve. Only then willshe be able to ommitarx ommit -s �Merge from sort.bob,27�Her branh will then inorporate Bob's improvements, giving Figure 5.3.5.2.3 ReplayThe merge ommand looks at the di�erenes as a large, amalgamated whole. Sometimes,it an be advantageous to onsider di�erenes path by path. This is what replay does. IfAlie had instead typed 25

alice@bar.org/sort.bob.quick,0

alice@bar.org/sort.bob.quick,1

alice@bar.org/sort.bob.quick,2

alice@bar.org/sort.bob.quick,3

alice@bar.org/sort.bob.quick,4

...

bob@foo.org/sort.bob,22

bob@foo.org/sort.bob,23

bob@foo.org/sort.bob,24

bob@foo.org/sort.bob,25

bob@foo.org/sort.bob,26

bob@foo.org/sort.bob,27

bob@foo.org/sort.bob,0

bob@foo.org/sort.bob,1

bob@foo.org/sort.bob,2

Figure 5.3: Alie's branh updated with Bob's improvementsarx replay bob�foo.org/sort.bobthen ArX would instead have tried to �rst apply path 23 onto Alie's tree, then path 24,then path 25, et. If, along the way, any of those pathes aused a on�it, ArX stops withthat path and lets you �x up the tree before ontinuing. For example, suppose path 24had a on�it. sort_quik will ontain the result of ArX's attempt to path up to path24. One Alie �xed up the sort_quik diretory, she an just repeat the same ommandarx replay bob�foo.org/sort.boband ArX will attempt to ontinue the update. If there are other on�its, Alie an ontinue�xing on�its and repeating the update until she reahes Bob's urrent version. Assumingthat Alie resolved on�its the same way, this should give exatly the same result as Figure5.3.However, replay also o�ers the possibility of seletively applying pathes. Suppose Aliedidn't like all of Bob's pathes, but only liked pathes 25 and 27. She ould have inorporatedthose hanges, and only those hanges, with the ommandsarx replay --exat bob�foo.org/sort.bob,25arx replay --exat bob�foo.org/sort.bob,27This will apply pathes 25 and 27 to the tree. She an also do it in one go by putting thepathes names in a �le and using the --list option.Unfortunately, one she uses seletive pathing, she an't use merge or replay in theirgeneri form anymore. They will both want to inorporate the pathes that she deliberately26

alice@bar.org/sort.bob.quick,7

alice@bar.org/sort.bob.quick,6

alice@bar.org/sort.bob.quick,5

alice@bar.org/sort.bob.quick,4

alice@bar.org/sort.bob.quick,3

alice@bar.org/sort.bob.quick,2

alice@bar.org/sort.bob.quick,1

alice@bar.org/sort.bob.quick,0

...

bob@foo.org/sort.bob,0

bob@foo.org/sort.bob,1

bob@foo.org/sort.bob,2

bob@foo.org/sort.bob,22

bob@foo.org/sort.bob,23

bob@foo.org/sort.bob,24

bob@foo.org/sort.bob,25

bob@foo.org/sort.bob,26

bob@foo.org/sort.bob,27

bob@foo.org/sort.bob,28

bob@foo.org/sort.bob,29

bob@foo.org/sort.bob,30Figure 5.4: Bob's branh star-merged with Alie'sskipped. ArX urrently does not have a means of marking ertain pathes as unwanted. Ifshe wants to ontinue to get updates from Bob, she will always have to use the --exat or--list options.5.2.4 Merging BakAlie an ontinue haking, using merge or replay to update her branh with Bob's hanges.Eventually, Bob may want to integrate Alie's hanges. This is as simple asarx merge alie�bar.org/sort.bob.quikThis will inorporate all of Alie's pathes. ArX is smart enough to know that it really onlyneeds the pathes after path 27 from Bob, beause alie�bar.org/sort.bob.quik,4integrated Bob's branh up to path 27 into Alie's. As usual, this pathing may ause aon�it. One that is leaned up, a ommit will lead to Figure 5.4.As Alie and Bob ontinue improving their respetive branhes, they an ontinue tomerge with eah other with merge. 27

5.2.5 Bug Fix BranhesThere are other reasons for making a branh. If you have made a release of your soft-ware, and want to �x issues in that release without a�eting urrent development, thenyou an branh from that release. For example, suppose that Bob had made a release ofbob�foo.org/sort.bob,203 . Later, after Bob has merged in the support for Alie's workon quik sort, someone �nds a bug in his implementation of bubble sort (how embarrasing!).Bob an't make the �x in the urrent line of development, beause the bubble sort has beenremoved. Bob also an't release the urrent line of development beause the projet is notin a releaseable state. Instead, he branhes from the release and �xes the bug on the branh.Spei�allyarx get bob�foo.org/sort.bob,20 fixedd fixed(fix the bubble sort bug)arx fork bob�foo.org/sort.bob.fixedarx ommit -s �Fixed the bubble sort�Bob an now make a new release with bob�foo.org/sort.bob.fixed,0, and it will onlyhave the �x to the bubble sort bug.If it turns out that the bug has already been �xed in the urrent line of development,Bob an pull in just that hange. For example, if there is a typo in the help sreen that hasbeen �xed in bob�foo.org/sort.bob,30, then Bob an apply just that path witharx replay --exat bob�foo.org/sort.bob,30See also Setion 5.8.2 for how to apply pathes with even �ner granularity.5.3 Remote Cooperation and Publishing Your Work5.3.1 Tags5.3.1.1 Release MarkersIf you wish to distribute your work, you an reate and update a mirror as desribed insetion 5.1.4. Then other people an register your arhive and get the latest revision usingarx get. However, people may not want to ontinuously follow every little spelling and o�-by-one bug�x. They only want signi�ant, well-tested improvements. You an aommodatethem by using symboli names to mark ertain revisions as stable. For example, onsiderthe situation given in Figure 5.1. If Bob is happy with the state of the tree at that point,then he an reate a release marker witharx tag bob�foo.org/sort.bob.release bob�foo.org/sort.bob3It is usually best to use tags (Setion 5.3.1) to mark releases rather than using a spei� revision number.28

This reates a revision, bob�foo.org/sort.bob.release,0, whih ats as a symboli namefor the last revision of bob�foo.org/sort.bob (in this ase, that would be bob�foo.org/sort.bob,22).Bob an run this ommand whenever he wants to make a release. An interested user an getthe latest release witharx get bob�foo.org/sort.bob.releaseBeause bob�foo.org/sort.bob.release is just a symboli name, you an not fork diretlyfrom it. Rather, you must fork from the referened revision.You an also use tags to just give a di�erent name for a partiular revision. For example,suppose you had a branh myprodut, and your marketing experts wanted to name the nextversion v0.0.1. Thenarx tag myprodut myprodut.v0.0.1will reate a revision that you an get witharx get myprodut.v0.0.15.3.1.2 ColletionsYou an also use tag to mark a olletion of projets. So if you have the diretory struturefoo ----> Contains the projet foo.mainfoo/bar ----> Contains the projet bar.mainthen you an mark the whole olletion of projets witharx tag foo.olletion foo.main bar.main barThat is, you �rst speify the head projet (foo.main). For the tail projets, you speify theprojet name (bar.main), and the subdiretory that it goes into (bar). Thenarx get foo.olletionwill download both foo.main and bar.main, and put bar.main into the bar subdiretoryof foo.main.You an have as many sub-projets as you wish. For large, ompliated projets, you anread in a list of projets from a �le. The format istag-namehead-projetsub-projet sub-dirsub-projet sub-dir...Then you read it in witharx tag -f FILE 29

5.3.1.3 Floating TagsWith these large, ompliated projets, another problem emerges. When you de�ne a tag,it will point to a partiular revision. In the previous setion, runningarx tag foo.olletion foo.main bar.main barwill reate a tag foo.olletion,0 that points to the last revision of foo.main (perhapsfoo.main,12) and the last revision of bar.main (perhaps bar.main,7). If you ontinue towork on foo.main and bar.main, then runningarx get foo.olletionwill always give you foo.main,12 and bar.main,7. On the other hand, if you use a �oatingtag arx tag --float foo.head foo.main bar.main barthen foo.head will always point to the latest revisions of foo.main and bar.main. You annow always get the latest version of the entire olletion witharx get foo.headIf you just want to update a opy of the tree, then it is justarx merge foo.head5.3.1.4 LimitationsTags will show up as ordinary branhes in arx browse, but they have a few restritions. Inpartiular, tree-ahe, replay, fork, file-diff, file-orig, file-undo, and get-pathwill not work with tags. diff does not work diretly with tags, but there is a --reursiveoption to handle olletive tags. arhive-ahe, get, export, missing, and merge willwork even with olletive tags. So get gets all of the di�erent projets, merge updates themain projet and subprojets, et. merge also has a --reursive option, whih updates allof the subdiretories, not just the ones listed in the tag. The --reursive is equivalent torunning merge in eah subdiretory. So it will not update a subdiretory to a new branh,while using merging with a tag ould.5.3.2 exportYou may deide that you do not want to make people use ArX just to get a revision. Evenwithout other people involved, you may want to use your work in di�erent environmentsthat do not have ArX installed. export an reate a tree without any of the ArX ontrol�les and, for your onveniene, a tarball of this tree. For example, if the latest revision ofhello.main is path 6, thenarx export --tarball hello.main hellowill reate a tarball in the urrent diretory named hello.6.tar.gz. If you desire, you aninlude GNU-style hangelogs with the --hangelog option. export will also work withtags5.3.1. 30

5.3.3 Applying pathes diretlySometimes it is useful to generate and apply pathes diretly. For example, you might �x abug in a projet, but have no means of publishing the arhive. So you want to just mail thepath diretly to the upstream author.arx diff -o diffdirwill reate a path in the diffdir diretory. You an simply tar up that diretory and mailit. If you have made your own arhive with several pathes, you an still bundle all of thehanges together with diff. You just supply diff with the last upstream revision. Forexample, given the situation in Figure 5.2, Alie an reate a path of all of the work shehas done witharx diff -o diffdir --revision bob�foo.org/sort.bob,22Alternately, you may wish to give the pathes bak pieemeal, so that the upstream authoran take only what they want. You an get a spei� path with get-path. So again withthe example in Figure 5.2, Alie an get all of the indiviual pathes witharx get-path alie�bar.org/sort.bob.quik,0 alie.0arx get-path alie�bar.org/sort.bob.quik,1 alie.1arx get-path alie�bar.org/sort.bob.quik,2 alie.2arx get-path alie�bar.org/sort.bob.quik,3 alie.3This will put the pathes into the diretories alie.0, alie.1, alie.2, and alie.3.If you want to put together some, but not all, of the pathes, you an reate a newprojet tree with the upstream author's latest version. Then you an apply the spei�pathes with replay and diff will produe a path that enompasses all of the hanges.With the Alie/Bob examplearx get bob�foo.org/sort.bob,22 sortd sortarx replay --exat alie�bar.org/sort.bob.quik,1arx replay --exat alie�bar.org/sort.bob.quik,3arx diff -o path_1_3This will put a path in the diretory path_1_3 whih agglomerates the pathes alie�bar.org/sort.bob.quik,1and alie�bar.org/sort.bob.quik,1.On the reeiving end, if the original author has a projet tree in diretory foo and thepath unpaked into the diretory diffdir, thenarx dopath diffdir foowill apply the path. 31

5.3.4 Multiple ommiters (a la CVS)If you have a partiularly large, ative projet, you may have many di�erent people updatingvarious parts onurrently. You want to allow the main development branh to be updatedby multiple people. This is the usual style of development with large projets using CVS.There are a few ways to do this in ArX.The �rst is to just make the arhive diretly writeable by all of the developers. If youare all in the same plae, you might do this with NFS. However, you do have to be arefulwith permissions and umask. Otherwise, one developer ommitting hanges may make itimpossible for other developers to ommit.If you are in separate plaes, you an give all of the developers aounts to a shared�lesystem, one again being areful about permissions and umask. If permissions and umaskproblems are insurmountable, or you do not wish to make new aounts for every personwho is vaguely interested in the projet, then you an make a single aount that all of thedevelopers an use to update the arhive with sftp. That means making a new aount foreah projet. It also makes it more di�ult to audit the ativity in the soure tree, sinethere is only one user-id assoiated with all of the hanges.One solution is to designate a person as an integrator. Developers branh o� of theintegrator's main line of development. When the developer is ready, they send a mergerequest to the integrator. The integrator applies the hange to a test tree, runs any tests,and ommits. This solution is nie in that it does not require giving out aounts to anyone.However, with a busy projet, the integrator an get overwhelmed.Fortunately, this proess an be automated with a path queue manager (PQM). A niePQM is bundled with ArX in the tools/pqm diretory. The idea is to have a speial PQMaount that manages the main line of development. Then developers branh o� of thismain line of development. When the developer is ready, they send a merge request to thePQM aount (e.g. through a signed email). The PQM aount attempts the merge, and,if suessful, ommits the hange. If the merge fails beause of on�its, then nothing isommitted. More doumentation an be found in tools/pqm.5.4 Reverting developmentSometimes, you want to undo some of the hanges that you have made.5.4.1 Before you ommitIf you haven't ommitted the hange to the arhive and you only want to revert one �le, youan use file-undo. That is, to undo the hanges made to �le foo, you would typearx file-undo fooHowever, file-undo will not work properly if you deleted the �le with �arx rm� or moved itwith �arx mv�. You an also deide to undo a �le bak to a partiular revision by speifyingthat revisionarx file-undo foo hello.main.1.0,1132

Using a revision other than the most reent may require ArX to get that old revision, whihan be time onsuming. If this is a problem, you an add that revision to your pristine trees.If you want to undo the hanges made to a number of �les, or you used �arx rm� or�arx mv� on a �le you want to undo, then you have to use undo with those paths as extraarguments. That is, if you want to undo the �les foo and bar plus everything in the diretorybat, you an use the ommandarx undo foo bar bat/If the hanges in the diretory bat/ depend on hanges elsewhere, then ArX will let youknow what you need to inlude. If you want to undo everything that has been done sinethe last ommit, just use undo without any arguments.file-undo will store a opy of the old �le in ��le-name, so you an get bak your hangesby opying that �le bak. undo will store the hanges in a diretory �undo-N, with N beingthe smallest number not already taken. To get the hanges bak, you an use redo. If youdon't give redo any arguments, redo will just use the largest numbered �undo-N diretory.Of ourse, if you deide that you really don't need the hanges, you an simply delete the��le-name �les and �undo-N diretories. ArX will never delete them itself.In summary, file-undo is nie for hanges to a single �le, beause ArX keeps a ompleteopy of the modi�ed �le around. undo only keeps a opy of the di�erenes between theoriginal �le and the modi�ed �le. file-undo also works for any revision, while undo onlyworks for the urrent revision. However, there are times when file-undo will not work,while undo always works.5.4.2 After you ommitIf you have already ommitted the hanges to an arhive, then there are two ways of revertingthose hanges: Non-destrutive and Destrutive.5.4.2.1 Non-destrutive revertIf you deide that you need to revert hanges that have already been ommitted to anarhive, then you need to use the --add option to history. This will make it look like a treehas the pathes for a partiular revision without atually applying them. So, for example,suppose you really want the most reent revision to look like hello.main,12, but you madesome ill-onsidered hanges in pathes 13 and 14, then you ould runarx get hello.main,12 hellod helloarx history --add hello.mainarx ommit -s �Reverted pathes 13 and 14�That will reate revision path 15 whih will look exatly like revision path 12 exept forthe history. Then, if it turns out later that pathes 13 and 14 were not suh a bad idea, youan still get them. 33

This also lends itself to more ompliated senarios, where not everything in pathes13 and 14 was bad. For example, suppose the hanges to diretory bat/ were good, buteverything else was bad. Then you an use the sequenearx get hello.main,12 hellod helloarx history --add hello.mainarx undo bat/arx ommit -s �Removed everything in path 13 and 14 exept hanges to bat�This preserves the hanges to bat/ but not anything else.Finally, you an use history --add just to synhronize development. Consider a branhhello.branh that, for whatever reason, you want to make exatly the same as hello.main.Perhaps all of the hanges that were in hello.branh got integrated in various ways intohello.main, and you now want to re-syn hello.branh. You an aomplish this witharx get hello.main hellod helloarx history --add hello.branharx tree-version hello.branharx ommit -s �Synhronize with main�Most of the time, though, you would probably just abandon the old branh and make a newone. Otherwise, people may get onfused by a branh that hanges meaning.5.4.2.2 Destrutive revertYou may have aidently ommitted a �le that is extremely large, has orporate serets, isillegal to distribute, et. In those ases, you will want to do a destrutive revert of yourhanges and relaim the spae. ArX does not allow you to just remove a revision. That isbeause someone may have forked from there, and if you replae one revision with a di�erentone, then ArX will get very onfused. Essentially, ArX is trying to keep you from hanginghistory.As an example, suppose that revision foo,23 has one of these undesirable �les. You anissue the ommandarx delete-revision foo,23and ArX will print out a formatted version of the log and prompt you to ontinue. If youdo so, that revision will be replaed with an empty revision. It will have a log just statingthat it has been reverted. To ontinue development, fork from the previous revisionarx get foo,22 new_food new_fooarx fork foo 34

and work in the new_foo diretory. If you didn't notie the problem until after revisionswere added past foo,23, you an replay those pathesarx replay --exat --dir new_foo foo,24arx replay --exat --dir new_foo foo,25arx replay --exat --dir new_foo foo,25...If you had just used merge, you will get the deleted log message. Not the end of the world,but a minor annoyane.If you want to delete an entire branh, then delete-branh will remove everything,leaving no traes of that branh. For example,arx delete-branh foowill delete everything in the branh foo, inluding any sub-branhes suh as foo.bar,foo.bar.baz, et. This is a powerful ommand, and ArX prompts you before deleting.5.5 Properties5.5.1 Preserving File PermissionsArX allows you to assign arbitrary properties to paths. The primary appliation for thiswithin ArX is to version permissions. For example, if you want to make sure that the �lefoo will have its exeutable bit set, then the ommandarx property --set arx:user-exe true foowill ensure that. At present, the following properties have prede�ned meaningsarx:user-readarx:user-writearx:user-exearx:group-readarx:group-writearx:group-exearx:other-readarx:other-writearx:other-exeIf any of these properties are set to true or false, then when that path is heked out (e.g.with get), the appropriate permission bit is set (assuming the �le system an aomodateit).
35

5.5.2 User De�ned PropertiesYou an also de�ne your own properties. For example, you an assign a property that tellsyou what kind of liense a �le is overed by. If you typearx property --set liense GPL fooarx property --set liense BSD barthen the liense for �le foo is set to the GPL and the liense for bar is set to the BSD liense.Note that, while the properties an be arbitrary, they are designed to work well when theyare small.5.5.3 End-of-Line ConversionBy default, ArX does not do any onversion of the end-of-line markers used in �les. In thefuture, ArX may use the arx:eol-style property to do something similar to what Subversiondoes4.5.6 HooksOne approah to quality ontrol is to have a modi�ed projet tree go through a series ofautomated tests before the modi�ations are stored in the arhive. A simple example is tomake sure that the modi�ed tree will build. One the path has gone through, you may wishto automatially perform various ations, suh as sending mail about a path to interestedparties. ArX itself uses this feature to update the arx-hanges list.ArX supports these two needs through hooks. To use hooks, you reate an exeutable �lein ~/.arx/hooks. It an be a shell, Python, or Perl sript, or even a full blown C, C++, Javaor Lisp appliation. ArX invokes the hook both just before and just after it has altered anarhive by adding ategories, branhes, versions, or revisions. This ours when you invokeommit, tag, or mirror. ArX alls the hook with two arguments. The �rst argument iseither pre or post, indiating that the hook is being alled either before or after altering thearhive. The seond argument is one of make-branh or make-revision, indiating whatArX is about to do or has done. That is, the all syntax looks like~/.arx/hooks (pre|post) make-(branh|revision)In addition, ArX sets the environment variables ARX_TREEROOT to the root of the projet tree(if appliable), ARX_PREVIOUS_ARCHIVE, ARX_PREVIOUS_ARCHIVE_URI, ARX_PREVIOUS_BRANCH,and ARX_PREVIOUS_REVISION to the arhive, arhive uri, branh, and revision of the pre-vious revision, and ARX_ARCHIVE, ARX_ARCHIVE_URI, ARX_BRANCH, ARX_REVISION, and tothe arhive, arhive uri, branh, and revision involved. These an be queried to ustomizehow the hook behaves. As an example, the following shell sript will send email about newategories, branhes, versions, and revisions in the wlandry�usd.edu--arx arhive to thearx-hanges list4http://svnbook.red-bean.om/en/1.1/svn-book.html#svn-h-7-set-2.3.536

#!/bin/sh# Simple mail of path logpre_post=$1ation=$2if test $pre_post = "post" ; thenif test $ARX_ARCHIVE = "wlandry�usd.edu--arx" ; thenif test $ARX_ARCHIVE_URI = \"sftp://landry�superbeast.usd.edu//home/landry/publi_html/ArX/wlandry" ; thenif test $ation = "make-branh" ; thenprintf "$ARX_ARCHIVE" | mail -s \"New Branh: $ARX_BRANCH" arx-hanges�nongnu.orgfiif test $ation = "make-revision" ; thenarx log --remote --formatted --branh $ARX_REVISION | mail -s \"New Revision: $ARX_REVISION" arx-hanges�nongnu.orgfifififiThe hook sript is exeuted within the urrent diretory. This sript will be exeuted when-ever you alter any arhive, so a long ompliated sript will slow these ations down. Wheninvoked before altering the arhive, ArX waits for the hook sript to return and aborts if itreturns non-zero. When invoked after altering the arhive, ArX exeutes the hook sript inthe bakground and ignores the return ode. Post-ommit hooks are never guaranteed to beinvoked. A well timed interrupt ould let the transation �nish but prevent the hook fromrunning.5.7 Path Logs and ChangelogsWhen ommitting a hange, ArX needs a log �le with a Summary: �eld. If you use the -soption to ommit, then ArX will reate a log �le for you that ontains that �eld. However,you an also reate your own log �les with ustom headers. There are some reserved headers(suh as Standard-date:, Renamed-�les:, et.) listed in the help for log, but otherwise youan de�ne any header you like. The log �le uses an RFC-822 style format. A olon separatesthe header and the �eld, and the �eld is terminated by a newline that is not followed by atab. The body is separated from the headers by a blank line. As an example,Summary: Frozzled the fooMail-results-to: don�example.org, sanho�example.om,dulinea�example.netBug-Number: 1605The foo was blarged by the bar, so I had to frozzle the foo in order tounmome the borogoves. 37

You an then speify that log �le with the --log-file option to ommit.ArX adds some reserved �elds and stores the log as part of the path. These logs thenbeome part of the revision. When you make a branh, your logs for that new revision appearin the projet tree. You an see what versions have gone into a projet tree with history.For eah of the versions that it lists, you an �nd out whih pathes are inluded with log.log also lets you look at spei� headers. A simple example is to look at the New-files:�eld for all of the pathes for the urrent version of the treearx log --header Revision --header New-filesThe Revision header is inluded beause otherwise there is no way to tell whih new �lesbelong to whih revision.You an also do more ompliated things, suh as �nding when foo.bar.1.0,112 was reatedand by whomarx log --header Standard-date --header Creator \--branh foo.bar.1.0,112You an use the --remote option to look at logs for revisions that you don't have in a projettree. For example, if you were unsure whether you wanted to get those revisions at all.5.8 Making Pathes Bigger or SmallerArX urrently does not support diretly breaking up one path into smaller pathes oromposing multiple pathes into one big path. You an ahieve the same e�et throughsome workarounds.5.8.1 Seletive ommitsSuppose you are happily working on one feature, but along the way you notie and �x a bugin unrelated funtionality. You would like to separate the bug �x from the ongoing featurework. Usually, the best way to do this is with extra path arguments to ommit. For example,if the features are in �le foo, and the bug �x is in �le bar, then �arx ommit bar� will onlyommit the hanges in �le bar. You an also selet �les that have been added, moved, anddeleted. ArX performs thorough heks to make sure that you always ommit a valid path.For example, if you were not areful, you might ommit a �le that is in a diretory that doesnot yet exist in the arhive. If you try to make ArX do this, then ArX will tell you whatpaths need to be added the argument list.If the separation between bug �x and feature is not so lean, suh as if the hanges ourin the same �le, then you an use undo. You run undo on the whole diretory, make andommit the bug �x, then redo to get bak the work you've done. More information onundo/redo is in Setion 5.4.
38

5.8.2 Breaking up pathesSuppose that someone has reated a humongous, all-singing, all-daning path that adds 12features, �xes 30 bugs , and, of ourse, introdues its own. You are only interested in apartiular feature whih is loalized to �les foo1, foo2, foo3, et. To get just the hanges tothese �les, you an do something likearx replay --exat bar.big-pathes,13arx undo -o foo_undo foo1 foo2 foo3 ...arx undoarx redo foo_undoThis gets the path, applies it to your own tree, seletively reverts the feature you want,reverts everything else, and then reapplies the desired feature.5.8.3 Agglomerating pathesSuppose you have a projet foo.main, and you want to make a path that inludes pathes122, 133, and 156 all as one big path. You an do it with something likearx get foo.main,121 food fooarx replay --exat foo.main,122arx replay --exat foo.main,133arx replay --exat foo.main,156arx diff -o big_path --revision foo.main,121This gets revision 121, applies the various pathes seletively, and then puts the agglomeratedpath into the diretory big_path.5.9 Working with Large Trees5.9.1 arx editBy default, ArX is set up to be very areful when looking for hanges. This means that ArXhas to look at the ontents of every �le before it an deide whether it has hanged. Thisan be prohibitively slow for large projets. So ArX o�ers another mode of operation whereyou an promise not to edit a �le unless you spei�ally tell ArX. This approah is similarto what Perfore and Bitkeeper do.You an take advantage of this mode of operation by using the --no-edit option toget. ArX will download the revision and then hange the permissions on all of the �les toread-only. To edit a �le, you have to run arx edit and ArX will hange the �le to writeable.Then, when you run arx ommit, ArX will one again mark the �les as read-only. You donot have to run arx edit in order for arx rm, arx mv, and arx property to work.The advantage of this is that when ArX �gures out what you have hanged for diff orommit, ArX only has to look at the short list of �les that you have marked (via edit, rm,39

mv, and property). This an redue the time for these ommon operations from minutes tonear-instantaneous. However, some people �nd this mode of operation inredibly annoying.Others hardly notie it. You only need to use it if you are running into problems. In general,if your projet tree is in memory, ArX humms right along. However, if the projet tree isnot in memory, ArX has to load it from disk whih an take a rather long time. Whetheryour tree is in memory depends on your individual work patterns.If you deide that you want to always work in this mode of operation, you an set totrue the no-edit parameter in arx param. Then get will always run as if the --no-editoption is present.5.9.2 link-treeIn addition to the --no-edit option, there is a --link-tree option. It is only useful withthe --no-edit option. The --link-tree option will use hard links when getting a tree,reduing both the spae and time required. However, beause it links with ahed revisions,write permissions in the ahe will get modi�ed as well. This means that versioned writepermissions will, in general, be unreliable. If it turns out that write permissions are notimportant for your projet (as is often the ase), then --link-tree ould well be a usefuloption. Like no-edit, you an set the link-tree parameter in arx param to make hardlinked trees the default.5.9.3 TimestampsAnother possible method that ould have been used is to save timestamps of �les on theinitial get. Then �guring out whether a �le has hanged means ArX would only have tolook at the timestamp of a �le. You an also ompare more than just timestamps (e.g. size).This method is very popular, being used by TLA, Dars, Subversion, CVS, and Stellation.It is a little nier interfae, sine you do not have to expliitly mark a �le as editable beforeediting.However, it falls down on many ommon �lesystems. Many �lesystems have a timestampresolution of one seond. That means that if you get a projet tree and edit a �le all withinone seond, then that �le will not show up as hanged. Normally, people an not type thatfast, so it is not a problem. However, if you are using some kind of automati path robot(as in setion 5.3.4), then the robot will reate a projet tree and apply the path. Somehanges to �les may then be ommitted, and others not. In general, any kind of sripted usean ause these problems.These problems are not aademi. All of the aforementioned version ontrol systems havehad problems arising from these inexat timestamps. Dars even has an --ignore-timesoption, whih is great if you remember to use it. Beause of this inherent unreliability, ArXdoes not implement this method.
40

5.10 Cryptographi Cheksums and Signatures5.10.1 TheoryOne data is stored in an arhive, it may beome modi�ed or orrupted. These modi�ationsould be aidental (e.g. disk orruption) or intentional (e.g. someone trying to insertmaliious ode).To detet these modi�ations, the �rst thing that ArX uses is heksums. There aretwo kinds of entities that get heksums in ArX: pathes and revisions. A revision is just aomplete soure tree, and a path is what gets you from one revision to another. Pathesare simply tar'd, gzip'd �le trees, and gzip has its own heksum. Revision heksums aremore ompliated.Whenever ArX stores a revision in the arhive, it reates a manifest �le. The manifest �lelists eah path in the revision, its properties (set with arx property), and a ryptographiheksum5 of the path's ontents. ArX then omputes a ryptographi heksum of theentire manifest, and stores that into the arhive. When someone downloads a partiularrevision, ArX rereates the manifest �le based on what it has downloaded. ArX then heksthe heksum of the newly reated manifest �le against the heksum in the arhive. All ofthis is ompletely automati, and you won't notie it unless something goes wrong.However, while this may work great for athing errors due to orrupted hard drivesand bad memory, it won't stop someone from deliberately inserting maliious ode into thearhive. They an always replae the heksum while replaing the original path. To solvethis, ArX uses ryptographi signatures.One again, both revisions and pathes an be signed. Pathes are signed diretly bystoring a detahed signature of the path �le in the arhive. Revisions are signed indiretlyby storing a detahed signature of the revision heksum in the arhive. In addition, ArXstores in the arhive a list of ryptographi keys that are allowed to sign revisions in thatarhive.So the �rst time a person downloads a revision or path from a partiular arhive, ArXwill download the list of ryptographi keys. ArX will then download the atual revision orpath and hek to make sure that it is properly signed by someone in that list.ArX uses Gnu Privay Guard (gpg) to do the atual reation and veri�ation of signa-tures. This has an advantage over other types of signatures (e.g. X.509) in that a number ofpeople already have a gpg key. An X.509 erti�ate would just be another seret to protet,another password to remember, et. In addition, your gpg publi key may be already beknown to the reipient.For those of you already using gpg, ArX does not use the usual web of trust. If you wantto download a revision from a random plae on the web, you don't want to have to extendyour trust for other things to this partiular publi key. Moreover, if someone managesto ompromise one person's key, they may be able to subvert a larger number of projets.However, this does mean that you should verify the publi keys you download.It should also be noted that, while ArX uses SHA-256, gpg may internally use somethingweaker (e.g MD5 or SHA-1). If you are onerned, you should onsult the gpg doumentation5ArX uses SHA-256 for its ryptographi heksum. This heksum has no known weaknesses (as opposedto MD5 or SHA-1), and should be su�ient for the next 50 years or so.41

to make sure you are using a seure hash.5.10.2 PratieAs noted before, you do not need to do anything for ArX to support heksums. ArX willautomatially reate and validate all heksums and let you know if there are any problems.To verify signatures of signed arhives, you only need to have ompiled ArX with gpgsupport. ArX will automatially download publi keys, and download and verify signatures.You an use arx arhives to see what publi keys are assoiated with an arhive and verifythat the keys are genuine. You an quikly verify the signatures for all of the revisions in abranh with the sig ommandarx sig doyote�example.or/helloTo sign your own arhives is where you have to do some work. Signatures are managed ona per-arhive basis. Either everything in the arhive is signed, or nothing is. To reate anarhive that will be signed, use the --key option to make-arhive. For examplearx make-arhive --key doyote�example.org \doyote�example.org--arhive arhiveThe argument to --key an also be a gpg �ngerprint. If you want every arhive you reateto be signed, then use arx param to set the gpg-key parameter to your gpg publi key. Thiswill also set what your default key to sign arhives will be.One you have a signed arhive, ArX will ask for your gpg passphrase eah time youommit. This means that you will have to type in a passphrase twie eah time you ommit:one for the path and one for the revision. That an quikly get tedious. So you an tellArX to use a program suh as quintuple-agent to store your password. For quintuple-agent,that would bearx param gpg agpgNow ArX will use agpg when trying to sign and verify revisions. Quintuple-agent alsorequires you to set up an agent, whih you will have to do separately.If you have already reated an arhive and you want to make it signed, you �rst need toadd your publi key to the arhive using a ommand likearx sig --arhive --add doyote�example.org--arhive/Then you an manually sign eah path and revision with something likearx sig --add doyote�example.org--arhive/hello,0or just sign all the pathes and revisions in a branh witharx sig --add doyote�example.org--arhive/hello42

If you have any mirrors, you should delete them and re-mirror.You an also delete a signature with the --delete option. All of these examples will addor remove your default gpg publi key set with arx param. To add or delete a di�erent key,use the --key option.Finally, you need to let everyone else know that your arhive is now signed. Other peopleaessing the arhive will not automatially update the list of keys to trust. So if you try tosign revisions with the new key, they will not validate the signature. They must unregisterand reregister the arhive.5.11 InternationalizationArX takes a laissez-faire attitude to internationalization. In partiular, ArX treats everythingas a sequene of bytes, and does not attempt to onvert anything into a anonial form (e.g.UTF-8). So �le ontents an be in any enoding, and ArX will not are. If Gnu di� thinksthat a �le is binary, then ArX will use a binary di� and path. This prevents automatimerging, but otherwise everything will work �ne. Moreover, ArX does not do any line-endingonversions for Windows and Unix lients.The situation with �le and diretory names is more omplex. ArX uses C Posix API's suhas stat() whih require null terminated strings. So if your �le names have any embedded nulls,you will quikly run into problems. What this means is that if you use UTF-8 everywhere,then you should have no problems. With the various Latin enodings, all of the �les will bestored orretly, but they may not display orretly if someone has a di�erent loale.No guarantees are made for other enodings. In partiular, Shift-JIS, Big5, VISCII,and KOI8 will probably have problems. Those enodings use the slash �/� harater in amultibyte harater, whih will make ArX think that the path is referening a subdiretory.5.12 Inluding one projet within anotherSuppose you have projets foo and bar, and you want to merge projet bar into foo. Thatis, you want all of the �les in bar to be present in foo. All you need to do is move all ofthe �les in bar into foo with �arx mv�. Then you just synronize the foo tree with bar withhistory --add and then ommit. All of the history will be preserved, even if pathes areapplied from the old projet.5.13 Projet Tree Inventories5.13.1 Inventory IdsWhen ArX is looking at a path, ArX wants to assign the path a unique identity that willpersist even when the path is renamed. ArX does this with inventory ids. An inventory id isjust an alternate name for a path. When a path is �rst introdued to ArX with �arx add�,it will have an inventory id assoiated with it.43

Type Stored in Arhive? Created by tree-lint warning?soure Yes User Noontrol Yes ArX Noignored No User Nounreognized No User/ArX YesTable 5.1: Inventory TypesInventory ids are ontained inside a small �le inside the _arx diretory whih you shouldnever deal diretly with. When you need to move or delete the path assoiated with theexternal inventory id �le, you must use �arx mv� and �arx rm�. Otherwise ArX will getonfused.If you do not expliitly add a path, then it will not get arhived. tree-lint andinventory ome in handy here. If you do not use ArX to move and delete paths, thenArX will notie when you try to ommit and fore you to �x it.5.13.2 Inventory TypesWhen ArX looks at a projet tree, it likes to divide the paths into various types. Thereare �ve di�erent types: nested_tree, soure, ontrol, ignored, and unreognized. Anested_tree is merely a projet tree within a projet tree. The other types require moreexplanation.These types ome about beause ArX has some deisions to make when looking at a �le.ArX has to deide whether a �le will get stored into an arhive. Files lassi�ed as soure orontrol are stored in the arhive, everything else will not be. The only di�erene betweensoure and ontrol is that you reated the soure paths, while ArX reated the ontrolpaths. For �les that are not being arhived, ArX has to know whether it should warn theuser during tree-lint. Only unreognized �les trigger warnings just by being lassi�edas unreognized. This is summarized in Table 5.1.The algorithm that ArX uses to lassify a path is:1. If the path is a diretory and has an _arx subdiretory, then it is a nested_tree.2. If the path is in the _arx diretory, then it is ontrol.3. If the path has an inventory id, then it is soure.4. If the path's name mathes with the regex for ignore, then it is ignore.5. Otherwise, it is unreognized.�arx inventory� will print out a list of all of the paths and how they have been lassi�ed.By default, inventory will not print out the ontrol paths. The default regex for ignoreis empty. You an hange it with �arx ignore�. For example, to hange the ignore regex toignore �les ending with .o, .bak, or ~, the ommand would bearx ignore "^.*(.o|.bak|~)$" 44

ArX uses Boost.Regex, whih uses the regular expression syntax desribed in ECMA-262,ECMASript Language Spei�ation, Chapter 15 part 10, RegExp (Regular Expression)Objets (FWD.1).5.14 Pristine TreesArX normally stores a omplete opy of the projet tree in the _arx diretory. This allowsommands whih need to ompare against a previous revision, suh as ommit, diff, undo,and file-undo, to omplete quikly. Also, if ArX has to get a partiular revision, it anuse that pristine tree as a base to start from instead of having to feth everything from thearhive.Usually, a projet tree will only have the pristine tree of the latest revision. ArX willautomatially keep it up to date for you. Sometimes, you may �nd it useful to have pristinetrees from other revisions, suh as revisions that have branhed o� of yours. You an query,add, or remove pristine trees with tree-ahe.One problem with pristine trees is that they do take up more spae. See setion 5.9.2 forone strategy for ameliorating that.5.15 Additional ToolsInluded with the ArX distribution are a few additional tools.
• A bash ompletion ode to make typing many of the ommands less onerous.
• An emas mode whih integrates ArX into the editor.
• A python sript hek_moved.py whih is useful when importing pathes from non-ArX users. A di� an simulate a �le rename by deleting and re-adding the �le.hek_moved.py will detet that and �x up the internals of ArX to orretly trakthat move.
• A path-queue manager pqm. See Setion 5.3.4.

45

Chapter 6Beyond this manualThis manual has presented most of the ommands available. If you want to �nd out whatall of the ommand's are,arx --help-ommandswill print them out. By neessity, this manual has not plumbed all of the various options tothe ommands. All of the ommands have a help sreen that an be aessed with the �helpommand.

46

Appendix APath AlgorithmThere are three possible relations between two objets: parent (p), hild (), and other (o).A parent is a parent diretory, hild is a hild diretory, and other is something that is not inthe same hierarhy. Viewed this way, there are nine di�erent possible ways to move things:1. p->p2. p->3. p->o4. ->p5. ->6. ->o7. o->p8. o->9. o->oWe also want things that are in a diretory that is being renamed or deleted to be automat-ially renamed or deleted if they are not otherwise spei�ed.If someone doesn't want things to be automatially deleted, then we an only deletediretories that are already empty, beause the ontents have all been eliminated.The basi algorithm is:1. Get a list of all renames and deletes, and sort it so that the bottom-most elements are�rst. That is, if we havea/a/b/a//a/d/a/b/ 47

a//Then it should get sorted as something likea/d/a//a/a/b/a/ba/Note that this is both renames and deletes. For example, a/ might be deleted anda// might be renamed.2. In this bottom-up ordering, we rename the deleted �les to �delete-0, �delete-1, ...and renamed �les to �renamed-0, �renamed-1, ... in the temp diretory. If a souredoes not exist, omplain and put a note somewhere.3. Figure out where a path should go. If the path is just being renamed (foo/a -> foo/b)as opposed to being moved (foo/a -> bar/a), then just rename the path regardlessof its urrent parent. If it is just being moved, then move the path, regardless of itsurrent name. Note that ArX knows if a parent diretory has been moved and putsthe path in the right plae. If the destination parent does not exist, signal a on�itand put the path in the destination given by the path.4. Sort the destinations of the renames in a top-most fashion (opposite of bottom-up).Move the renames into their destination using this ordering. If the destination exists,rename the destination to (original_name).orig. If _that_ exists, then we try .orig-1,.orig-2, ...5. If we are removing deletes, then just delete all of the �delete objets. If we arekeeping them, then do a similar rename for the �delete-* �les, moving things toa �removed-by-dopath diretory but it has the original name. There should be noon�its when doing this rename.6. Delete the temporary diretory. There should be nothing in it.7. Apply regular and metadata pathes to paths.

48

Appendix BCon�itsThere are 12 di�erent types of possible on�its. Most of these types are related to movingand renaming paths. One thing to keep in mind is that ArX handles renames (foo/a ->foo/b) separately from moves (foo/a -> bar/a). So there an be on�its related to theparent diretories separately from the renamed path.1. Merge: There was a on�it when applying a three-way merge to a �le. This is themost ommon type of on�it when merging �les, where two people make on�itinghanges to a single �le. ArX prints out the loations of the partially merged �le, theoriginal version in the tree, the anestor's version, and the sibling's version. For exam-ple, ArX might print outfoo foo.tree foo.anestor foo.siblingIf a merge sript exists (see Appendix C.1), ArX will invoke the sript for these �les.2. Path: There was a on�it when applying a path to a �le. This is the most ommontype of on�it when using replay or the path algorithm in merge, where two peoplemake di�ering hanges to the same �le. ArX prints out the loations of the �le withperhaps some parts of the path applied, a opy of the �le before it was pathed, anda opy of the rejeted hunks of the path. For example, it might print outfoo foo.orig foo.rejIf a path-merge sript exists (see Appendix C.2), then ArX will invoke the sripton these �les.3. xdelta: There was a on�it when applying a path to a binary �le. ArX uses thexdelta algorithm to ompute di�s between binary �les, and pathes to binary �les onlywork if the �le is exatly what is expeted. So there is no fuzz fator to allow formodi�ed �les to be pathed. ArX prints out the name of the �le and the rejetedxdelta path. For example, it might print outfoo foo.xdelta 49

Unfortunately, there is not muh that you an do with .xdelta �les. They use adi�erent format than the xdelta program.4. Move Target: The destination of a rename is already oupied. For example, if thepath renames foo to bar, and bar already exists. ArX prints out the ontended nameand where the original has been moved. In this example, ArX would print outbar bar.orig5. Move Parent: The parent of a path that has been renamed has been hanged in someinompatible manner. For example, if a path renames foo/a to bar/a, but the �le isin diretory baz. ArX prints out the initial plaement of the moved path, the pathesinitial parent diretory, and the pathes destination parent diretory. In this ase, ArXwould print outbaz/a foo => bar6. Rename: The name of a path has been hanged in some inompatible manner. Forexample, if a path renames foo/a to foo/b, but the �le is already named foo/. ArXprints out the initial loation of the moved path, the pathes initial loation of themoved path, and the pathes destination of the moved path. In this ase, ArX wouldprint outfoo/ foo/a => foo/b7. Deleted Parent: The parent diretory for the destination of a move has been deletedby this path. For example, suppose the path moves foo/a -> bar/a and deletes thediretory baz, but bar has been moved into a subdiretory of baz. ArX prints out thepathes initial and �nal destination. In this ase, ArX prints outfoo/a => bar/a8. No Parent: The parent diretory for the destination of a move path has been deletedoutside of this path. For example, if the path moves foo/a to bar/a, but bar wasdeleted before the path was applied. This di�ers from a Deleted Parent on�it wherethe parent diretory is deleted in the path itself. ArX prints out the pathes initialand �nal destination. In this ase, ArX prints outfoo/a => bar/a9. Missing Moves: A path that is being moved seems to be missing. ArX will print outthe pathes initial and destination loation, and the path's inventory id. For example,it might print outfoo bar 32472534872abd896d986de22f87de9fef997a97bd97e9779824234827648d50

10. Missing Pathes: A path that is being path seems to be missing. ArX will print outthe pathes path loation.11. Add: A path is being added with the same inventory id. For example, you might havea path foo with the inventory id a9de..., and you are trying to add a path bar withthe same inventory id. ArX will print the path you are trying to add, the path thaton�its with it, and the inventory id. For this example, ArX will print outbar foo a9de...Note that ArX will only signal a on�it if either the name or the ontent of thepath is di�erent. So if you apply an ArX path and then immediately reapply it, youshould not get any of these kinds of on�its.12. Diretory Loop: ArX enountered a loop when trying to move a path. This on�ithappens when the path tries to move a diretory to its own subdiretory. For example,suppose the path moves foo -> bar/foo, but the tree already has foo/bar. If ArXdetets a diretory loop, ArX will try to move everything bak to where it was before.This may ause additional on�its if some parent diretories are deleted. ArX willprint out the paths urrent loation and the path's initial and destination loations.For this example, ArX will print outfoo foo -> foo/bar/foofoo/bar bar/foo -> bar/foo/bar/fooNote that ArX inferred the move of foo/bar -> bar/foo/bar/foo.

51

Appendix CSample Merge Sripts
C.1 Three way mergesArX looks in ~/.arx/merge3 for an exeutable merge sript. The sript is given four argu-ments1. The original tree �le2. The anestor �le3. The sibling �le4. The destination tree �leC.1.1 Meldrm �$4�mv �$1� �$4�meld �$2� �$4� �$3�C.1.2 Xxdi�rm �$4�xxdiff --title1 anestor --title2 tree --title3 sibling -M �$4� --show-merged-pane �$2� �$1� �$3�C.1.3 kdi�3rm �$4�kdiff3 --L1 anestor --L2 tree --L3 sibling -o �$4� �$2� �$1� �$3�C.1.4 gvimdi�rm �$4�mv �$1� �$4�gvimdiff �$2� �$4� �$3� 52

C.1.5 X/Emasrm �$4�emas --eval �(ediff-merge-files-with-anestor \�$1\� \�$3\� \�$2\� nil \�$4\�)�C.2 Path mergesArX looks in ~/.arx/path-merge for an exeutable merge sript. The sript is given threearguments1. The original tree �le2. The .rej �le3. The .orig �leAt present, the only tool that works well with .rej �les is X/Emas. The sript for X/Emasis simplyemas $2The following is a reipe from Miles Bader for using emasIf you're using an up-to-date version of emas (I mean the original GNU Emas,I'm not sure about xemas), it should enter di�-mode automatially when youvisit the .rej �le. From there, there are several useful ommands you an use, forinstane, putting the ursor in a di� `hunk', and pressing `C- C-' will attemptto jump to the orresponding loation in the soure �le; typing `C- C-a' whilein a hunk will try to atually apply the hunk (and will fail if it an't). Applyinga hunk from di�-mode sometimes sueeds where path failed, though I'm notexatly sure why, as it's atually more strit about mathing the original �le (itdoesn't do `fuzzy' appliation).So for instane a typial strategy I'll use is:(1) Visit the .rej �le in emas; this will automatially be in di�-mode(2) Make the bu�er writable so I an modify the .rej �le; this is just my personalstyle, you don't have to do this. di�-mode by default makes the bu�er read-only,but I like to delete eah hunk suessfully applied, to make bookkeeping easierfor big .rej �les.(3) Use the ommand `M-U' �rst, whih onverts the .rej �le into `uni�ed di�'format, whih I �nd easier to read; again this is not neessary though, justsomething I like (and of ourse the bu�er must be writable from step (2) to dothis!).For eah hunk: 53

(3) Use C- C-a to try to apply the hunk; if appliation sueeds, delete the hunkfrom the .rej �le with `M-d' (.rej bu�er must be writable to do this), and go onto next hunk, otherwise:(4) Use C- C- to �nd the soure loation � this ommand will use line numbersas a bakup strategy, so it usually gets you at least lose � and see if there'ssome obvious problem where the soure �le has hange from what the path isexpeting.(5) If there's an obvious di�erene, say added ode in the hunk's ontext lines,_modify the hunk_ to math the soure, making sure any new lines you addto the hunk inlude appropriate di� line-start haraters (' ', '+', '-'). di�-modewill automatially make sure that the hunk line ounts et are kept up-to-date.Of ourse this requires are, but I �nd it easier to think about the interationof hanges if I keep the soure �le unhanged and update the hunk. If the hunkthen applies, then delete it and ontine as in step (3).(6) Sometimes di� generates really big hunks, whih inlude many individualhanges, and are di�ult to think about as a whole. For these, I often use thedi�-mode `C- C-s' ommand, to split the urrent hunk into two smaller hunksat the urrent line (this only works in uni�ed di� format, for obvious reasons),and then deal with eah smaller hunk individually. Sometimes, if you're not surewhere the problem in a big hunk is, you an use C- C-s to do a binary searhfor the mismath point (and use emas' undo ommand to undo any split that'snot useful).The above might sound a bit ompliated, but really it's not to bad one youknow the di�-mode ommands.The ruial thing I think, is that it's _muh_ easier to handle non-trivial on�itswith proper .rej �les, ompared to CVS on�it markers. the main reason I think,is that path is more onservative, and requires a ertain amount of surroundingontext to math for a path to be applied, and inludes the failing ontext inthe .rej �les so you an see what happened. Together with di�'s habit of mergingadjaent hunks into bigger hunks, this means that potentially problemati mergesare more likely to simply fail � whih is a _good_ thing...CVS requires _no ontext_, and though this an be onvenient for `obvious'ases, by the time that you realize something is non-obvious, it's already toolate, CVS has already applied a bunh of possibly inorret hanges, intermixedwith non-applied hanges using ontext markers.-Miles
54

Glossaryarhive A diretory where revisions are stored. See Setion 5.1branh A spei� line of development. See Setion 5.1.1inventory id A unique name for a path that persists aross renames. See Setion 5.13.1path A �le or diretory. In many ase, ArX treats �les and diretories in very similar ways.projet A olletion of all of the various branhes and revisions that make up a partiularwork.projet tree A diretory that ontains a working opy of your work.pristine A proteted, unaltered opy of a partiular revision, normally stored in a projettree in the {arh} subdiretory. See Setion 5.14revision A snapshot of the work at a partiular time, omplete with a path log desribinghow it di�ers from previous revisions. See Setion 5.1.1whole-tree ommits A ommit that involves all of the �les in a projet tree.

55

