ArX

16th November 2005

This document is Copyright (C) 2003-2005 Walter Landry, Copyright (C) 2003 Miles
Bader.

This work is free software; you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation; version 2
dated June, 1991.

This work is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this work;
if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA

Credits

ArX has been cooperatively developed, and has contributions from many people and or-
ganizations. A hopefully complete list: Pau Aliagas, David Allouche, Tim Barbour, Stig
Brautaset, Jon Buller, Junio C Hamano, Environment Canada - Meteorological Service of
Canada, Mike Coleman, Robert Collins, Don Dayley, Alexander Deruwe, Federico Di Gre-
gorio, Nicholas Dille, Paul Eggert, John Ellson, Robin Farine, Lele Gaifax, Karel Gardas,
Johnathan Geisler, Jonathan Geisler, Chris Gray, Jan Harkes, Isamu Hasegawa, Joey Hess,
Mikael Hillerstrom, David Kantowitz, Walter Landry, Tom Lord, Andrew Morton, Frank
Murphy, Steve Murphy, Gergely Nagy, Matthias Neeracher, Daniele Nicolodi, Scott Parish,
Chris Paulson-Ellis, Ulrich Pfeifer, Marc Recht, The Regents of the University of California,
Kevin Smith, Richard Stallman, Bruce Stephens, Robert W. Anderson, Bryan W. Headley,
Martin Waitz, Colin Walters.

In addition, ArX makes use of some wonderful tools from the FSF (www.gnu.org) and
four excellent libraries: Boost (www.boost.org), Loki (http://sourceforge.net/projects/loki-
lib/), Brian Gladman’s SHA implementation, and Graydon Hoare’s xdelta implementation.
The code in those libraries requires the following acknowledgements:

*

/* Copyright (c) 2000-2002

CrystalClear Software, Inc.

Permission to use, copy, modify, distribute and sell this software
and its documentation for any purpose is hereby granted without fee,
provided that the above copyright notice appear in all copies and
that both that copyright notice and this permission notice appear

in supporting documentation. CrystalClear Software makes no
representations about the suitability of this software for any
purpose. It is provided "as is" without express or implied warranty.
Copyright (c) 1998-2002

Dr John Maddock

Permission to use, copy, modify, distribute and sell this software
and its documentation for any purpose is hereby granted without fee,
provided that the above copyright notice appear in all copies and
that both that copyright notice and this permission notice appear
in supporting documentation. Dr John Maddock makes no representations
about the suitability of this software for any purpose.

It is provided "as is" without express or implied warranty.

¥ X X X X X K XK X X X X X X ¥ X ¥ X *

//
//
//
//
//
//
//
//
//
//
//
//

The Loki Library

Copyright (c) 2001 by Andrei Alexandrescu

This code accompanies the book:

Alexandrescu, Andrei. "Modern C++ Design: Generic Programming and Design
Patterns Applied". Copyright (c) 2001. Addison-Wesley.

Permission to use, copy, modify, distribute and sell this software for any
purpose is hereby granted without fee, provided that the above copyright
notice appear in all copies and that both that copyright notice and this
permission notice appear in supporting documentation.

The author or Addison-Wesley Longman make no representations about the
suitability of this software for any purpose. It is provided "as is"
without express or implied warranty.

Contents

Introduction

Installation and Versioning

2.1 Building ArX e
2.2 Versioningo e
Setup

3.1 IDs . . o e
3.2 Archives L

Basic Revision Control

4.1 The First Revision

4.2 Further Revisions L

4.3 More complicated changes o000

4.4 Reviewing your work oL

4.5 Working with an existing project L.
Advanced ArX Concepts

5.1 Archives L

5.1.1 Branches and Revisions00

5.1.2 Cached Revisions o

5.1.3 Remote Archives

5.1.3.1 HTTP with webDAV

5.1.3.2 HTTP with Explicit lists

5.1.3.3 Accessing the Archiveso

0.1.4 Mirrors

5.1.4.1 Publishing a local archive

5.1.4.2 Making a local copy of a remote archive

5.2 Branching and Mergingo

5.2.1 Initial Branching oo oo

0.2.2 Merge

.23 Replay o

5.2.4 Merging Backo

5.2.5 Bug Fix Branches o000

5.3 Remote Cooperation and Publishing Your Work

Ne)

11
11
11

13
13
14
14
15
15

0.3.1 Tags

5.3.1.1 Release Markers

5.3.1.2 Collections

5.3.1.3 Floating Tags

5.3.1.4 Limitationso

D.3.2 exXport
5.3.3 Applying patches directlyo
5.3.4 Multiple commiters (ala CVS)

5.4 Reverting developmento
5.4.1 Before you commit
5.4.2 After you commito
5.4.2.1 Non-destructive revert

5.4.2.2 Destructive revert

5.5 Properties
5.5.1 Preserving File Permissions
5.5.2 User Defined Properties
5.5.3 End-of-Line Conversion,

5.6 Hooks e
5.7 Patch Logs and Changelogs
5.8 Making Patches Bigger or Smaller 0000
5.8.1 Selective commitso
5.8.2 Breaking up patches Lo
5.8.3 Agglomerating patches o o000

5.9 Working with Large Trees
5.9.1 arxedit
5.9.2 link-tree
5.9.3 Timestamps e

5.10 Cryptographic Checksums and Signatures
5.10.1 Theory e
5.10.2 Practice

5.11 Internationalization
5.12 Including one project within another
5.13 Project Tree Inventories L Lo
5.13.1 Inventory Ids
5.13.2 Inventory Types

5.14 Pristine Trees L
5.15 Additional Tools

6 Beyond this manual
A Patch Algorithm

B Conflicts

46

47

49

C Sample Merge Scripts 52

C.1 Three way merges e 52
C1.1 Meld 52
C1.2 Xxdiff 92
C1.3 kdiff3. 92
Cl4 gvimdiff 52
C.1.5 X/Emacso o 53

C.2 Patch merges 23

Chapter 1

Introduction

ArX is a version control system that enables you to do many things that seem difficult
or painful with current systems. Suppose you are creating something, be it a program,
a document, or even graphics. As you make modifications to the work, you can save the
different revisions into an archive as you go along. Then, if you decide that something you
deleted is still useful, you can get that old work back. Sometimes it is just the difference
between two revisions that is interesting. ArX also makes it easy to get just those differences.

As the work becomes larger and more complicated, it spreads into different files. Some-
times you make a number of related changes to a number of files, and you want all of these
changes to be committed at the same time. In particular, some of these changes may depend
upon each other. ArX supports whole-tree commits, which ensure that all of those changes
are grouped together.

As the project matures, the logical structure changes, so you move files and directories
around. You find it convenient to use symlinks and permissions. ArX stores all of that
information, allowing you to get back exactly what you put in. Sometimes, you start working
on a change that you may not be completely sure whether it will end up in the final creation.
ArX makes it easy to create a branch of your creation that lives in parallel with the main
line of development. Once the work on that branch is done, ArX makes it easy to integrate
those changes back into the main line of development. Or you can just continue to work on
the branch and completely forget about the “main” line.

Finally, you want to release your work upon the world. ArX supports ways to package
up your creation into simple tarballs. People admire your work, and want to help out. This
is where ArX’s strengths really shine. You can publish your archive so that other people
can watch your development, trying out new elements as you create them. You can use a
variety of ordinary servers, including an ordinary web server, a web server with webDAV,
an ftp server, or an sftp server for secure access. You can also digitally sign the archive to
reduce the risk of someone compromising the code and inserted hidden bugs.

As time goes on, some of the testers become developers, sending in small patches to
improve this or that part. They can work in isolation, creating patches that they send to
you. You continue to work, and ArX makes it easy for independent developers to keep their
tree up to date. They, too, can publish an archive, and ArX makes it easy to integrate
patches from them. You can either take everything that they do, or you can selectively
apply patches from among the ones they offer. As before, you can easily create branches to

try out patches from many different sources, and only integrate those that pan out.

In time, you may tire of your creation, and some of your contributors may become more
prolific than yourself. ArX makes it easy for anyone to mirror your archive, and anyone
can create their own branches. Anyone can become a new maintainer. A new person, or a
new group, may come to hold sway over the future of the creation. Their own archives will
become the centers of eagerly awaited patches, while your own fades into history.

Chapter 2

Installation and Versioning

2.1 Building ArX

To build the code you will need a decent C++ compiler. A recent version of gcc (>—3.2)
is recommended. The code uses autoconf, so a minimal shell is needed. In addition, you
must have Python >-—2 (just used for building) and a working gnome-vfs2 install. Finally,
ArX uses GNU diff, patch and tar. On Windows, you can get these with Cygwin. See
INSTALL.CYGWIN for more details. On Mac OS X, you can use either pkgsrc! or Fink?.
Detailed installation instructions can be found in INSTALL.GENERIC.

Once you have it installed and in your path, you can invoke it

$ arx
and it will give some output

Invoke a sub-command of arx.
usage: arx command [options] [arguments]
All commands take the following options:

-h -H --help print a help message specific to that command
--silent no output

--quiet only output errors

--default-output default output

--report slightly verbose output

--verbose maximal output

-- mark the end of options

The -- option is useful for explicitly ending the list of options. This
is useful if a filename, for example, might be mistaken for an option.
In addition, you can specify the following options instead of a command.

-V --version print version info
-h --help display this help
-H --help-commands display a list of subcommands

thttp:/ /www.netbsd.org/Documentation /software /packages.html
2http://fink.sourceforge.net

In general, to invoke an ArX command, you type arx followed by the command, then followed
by any options, and finally any arguments to the command.

2.2 Versioning

You can find out what version of ArX you are running with the -V option:

$ arx -V

ArX 2.2.2

Built 00:25:42 Apr 28 2005 with gpg support

Copyright 2001-2005 by various contributors. See CREDITS for details.
This is free software; see the source for copying conditions.

There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.

Report bugs to <arx-users@nongnu.org>.

The version has three parts, a major, minor, and revision number. Two versions that differ
only in revision number (e.g. 2.0.12 and 2.0.15) should be mostly compatible. Commands
may be added, modified, or removed, but the disk format will be the same. A minor version
change means that the format for anything except an archive may have changed. For exam-
ple, you may have to delete and re-get a project tree. A major version change means that
the archive format has changed, perhaps requiring you to convert archives.

10

Chapter 3

Setup

3.1 1IDs

The first thing you should do is come up with an ID for yourself. ArX uses it to identify
who committed a change to an archive, and who is holding locks on an archive. You can use
your name or a pseudonym, as in

$ arx param id ‘“Don Quixote de la Mancha”

The argument is quoted because there are spaces in the name. To see what your ID is, you
can use param id without arguments

$ arx param id
Don Quixote de la Mancha

3.2 Archives

Now you need a place to store all of the revisions you are going to be making. This is called
an archive, and you create one with the make-archive command. You need to know two
things before you create the archive: what to call it and where it will be. You can name
an archive whatever you like, as long as it does not have a slash “/” or colon “” inside it.
The usual choice follows a syntax that looks like an email address followed by a further

delineation. For example
dcoyote@example.org--archive

The advantage of using an email address is that it is already unique, so you won’t have
clashes with another person. You will probably find yourself creating different archives for
different purposes, so it is wise to put some sort of qualifier at the end of the name of the
archive. For example, if you want to have an archive for your work at Yoyodyne Inc. and
another for your spare time, you might choose archive names such as

dcoyote@example.org--yoyodyne
dcoyote@example.org--freetime

11

Now that you have a name for your archive, you need a place to put it. Any spare directory
with a fair amount of space will do. If you have decided to put the archive in the directory
archive, then you make the archive with make-archive

$ arx make-archive dcoyote@example.org--archive archive

Note that you should never have to look inside that archive directory.
The last thing that you should do is set up a default archive. You just use the symbolic
name of the archive

$ arx param default-archive dcoyote@foobar.org--archive

You are now set up for basic revision control.

12

Chapter 4

Basic Revision Control

4.1 The First Revision

ArX works on entire project trees, so everything has to be stored within a directory. This
differs from some simpler revision control systems such as RCS which can operate on just one
file. So we need to create a directory to store our files. We will illustrate with the simplest
shell script, Hello world. We create the directory

$ mkdir hello
and then create the program

$ cd hello
$ echo "echo Hello, World" > Hello

Now we are going to store this masterpiece in ArX. We first have to initialize the tree, letting
ArX know that we are creating a new project. We will call the project "hello".

$ arx init hello

This creates an _arx sub-directory in the current directory. You should never need to look
at things in the _arx directory. It also automatically recursively adds all of the paths (files
and directories) in the directory to the list of paths that will get stored in the archive.

You can now store the first revision in your archive by running

$ arx commit -s ‘“First revision”
If later you decide that you want to get back this initial revision, you use get
$ arx get hello,0

This is the initial revision, so it has ‘¢,0’> appended to the end of the revision. Later revisions
will have ¢4, 17, ““,2”, etc. appended.

13

4.2 Further Revisions

Now suppose that you have made some modifications to your project. Commiting the changes
is just

$ arx commit -s “Fixed foo to do bar instead of baz”

You can continue this simple scheme ad infinitum as long as you don’t need to add, delete,
or move files.

4.3 More complicated changes

Sooner rather than later, you will want to add more files. ArX requires you to explicitly
notify ArX every time you add a file. You do this with the add command. For example, if
you created a file named “Goodbye”, you can add it by typing

$ arx add Goodbye

This works on directories as well, although not recursively by default. If you do not explicitly
add a file, then ArX will not store it or any modifications into the archive. If you do not
add a directory, any changes that occur in that directory will not be recorded.

Similarly, if you later decide that you don’t need “Goodbye” anymore, you can delete it
with the command

$ arx rm Goodbye

arx rm supports most of the same semantics as rm(l), so you can recursively and interac-
tively delete files and directories. Finally, you can move files

$ arx mv Goodbye Goodbye.sh

arx mv supports most of the semantics of plain old mv(1), so you can move a number of files
into a subdirectory

$ arx mv foo bar baz bat/

If you forget to use the ArX functions to delete and move files and directories, ArX will
not let you commit. You can use the tree-1lint to see what kinds of problems might arise
during commit.

$ arx tree-lint

Some of the things that tree-1lint complains about are only warnings that will not stop a
commit. For example, if you forget to add a file. In general, if you have been doing a lot of
modifications to the tree, it is wise to run tree-1lint before committing.

If you have made so many changes over such a long time that you have forgotten exactly
what you have done, then

$ arx diff

will tell you what paths have changed since the last time you committed.

14

4.4 Reviewing your work

You can get a terse listing of the revisions you have committed with
arx log

Alternately,
arx log --formatted

will give a more detailed picture. These commands look in the project tree for the informa-
tion. If you are not in the project tree, then

arx log --remote

will instead query the archive. Given this listing of revisions, you can get a particular revision
(e.g. revision 12) with

arx get hello,12

This puts revision 12 into the directory hello.12. Note that this is different from CVS,
because you didn’t have to explicitly tag a revision in order to get a particular snapshot of
the tree. Every revision is akin to a snapshot.

4.5 Working with an existing project

Suppose your trusty sidekick Sancho Panza has set up an archive at
ftp://ftp.example.org/“spanza/archive/

You can register that archive with the archives command

arx archives -a ftp://ftp.example.org/~spanza/archive/

ArX will retrieve the name of the archive from the archive itself. If Sancho Panza named the
archive spanza@example.org when he created it, then running archives without arguments
should give you output like

$ arx archives
spanza@example.org
ftp://ftp.example.org/ “spanza/archive

However, you don’t need to explicitly register the archive. ArX will do it for you whenever
you access the archive (e.g. when using browse or get). So to see what is there, you can
run

arx browse ftp://ftp.example.org/ spanza/archive/

15

The trailing slash “/” is important. ArX assumes that everything past the last slash is a
branch name, so without the trailing slash ArX would be looking for the archive branch in
an archive located at ftp://ftp.example.org/ spanza/.

Now that the archive is registered, you can use the archive name instead of URL’s. For
example, to get the windmill project from that archive, you can use

arx get spanza@example.org/windmill windmill

But using the full URL will always work
arx get ftp://ftp.example.org/ spanza/archive/windmill windmill

Once you have this project, you can keep up to date with any changes to the project with
arx merge --dir windmill

The merge command is analogous to the update command in CVS, although merge is much
more powerful. You can set up ArX to pop up a graphical merge tool in case of conflicts.
See Appendix C for details.

16

Chapter 5

Advanced ArX Concepts

The preceding chapters gave a basic introduction to working with ArX. However, some of
the things that make ArX so useful necessarily become somewhat specialized. So it has been
broken down into separate sections here. Each section should be fairly independent.

5.1 Archives

ArX uses archives to store all of the revisions of a project. As explained earlier, archives have
a symbolic name (like dcoyote@yoyodyne), and an address (like /home/dcoyote/yoyodyne).
You can have multiple archives on the same machine or multiple machines. make-archive
creates archives and registers them for you. archives lists, registers and unregisters archives.
If you need to move an archive, you only need to physically move or copy the archive directory
to its new location and re-register the archive.

Most of the time, you do not have to register archives with archives. You can browse
archives and get revisions by specifying the complete URI, and that will register the archive
for you.

5.1.1 Branches and Revisions

Within an archive are different branches. Branches are a basic way of splitting up work so
that people are free to work out improvements without directly upsetting the main devel-
opment branch. Branches have a hierarchical structure, and can be any number of levels
deep. For example, gce developers might set up a branch called gcc. Someone else might
be working on a new parser, so they make a branch called gcc.new-parser. During the
course of their work, the developers working on the new parser might make a branch for im-
proving compilation speed called gcc.new-parser.speed. They might make another branch
for handling java and call it gcc.new-parser.java. The branch names are purely for hu-
man consumption, and do not enforce any real relation between branches. For example,
gcc.new-parser. java might be completely unrelated to gce or the new parser at all.
Within each branch are revisions. These are numbered starting from zero. A revision is
a snapshot of the state of a project. For example, revision 66 might be the project just after
some speed improvements have been implemented. Revision 75 might be the project once

17

all of the bugs in the speed improvements are worked out. Revision 76 might be the project
once the docs are updated to reflect the new speedups. And so on. A revision is specified
with a leading comma “,” to distinguish it from a branch. So revision 66 of gcc.new-parser
would be gcc.new-parser, 66.

To summarize, the complete syntax for specifying a project is

archive/branch.subbranch,revision

If you have defined your default archive, you can omit the archive. There are a number of
cases where you may want to specify just an archive. If it is possible for the archive to be
confused with a branch or revision, you must follow the archive name with a slash “/”. For
example, to browse the contents of archive spanza@example.org

arx browse spanza@example.org/

Otherwise, ArX will think that you are trying to browse the spanza@example.org branch
in your default archive.

5.1.2 Cached Revisions

Arx does not store the full text of all revisions in the archive. Instead, it currently stores the
first revision and subsequent patches. This can be quite slow. For example, if you have 1000
revisions, each time you get the latest revision, ArX has to get and apply 999 patches to get
to the most recent revision. For that reason, you can cache revisions in the archive. Running
‘“‘archive-cache --add”’ will create a pristine tree of the latest revision and store it in the
archive. This has to do all of the patching, but subsequent get’s won’t have to. This uses
up additional space in the archive, because it is storing a tarball of an entire project tree
and all of the patches. If you need to reclaim the space, ‘““archive-cache --delete’’ will
remove it. Finally, ‘“archive-cache’ without any options will tell you which revisions have
been cached.

5.1.3 Remote Archives

Remote archives are simply archives that are not accessible through the local filesystem. In
practice, remote archives are the principal method for distributing software through ArX.
For example, remote archives can be pushed to (e.g. mirroring a local archive to a web
server) or pulled from (e.g. to download software from that web server). ArX uses the
gnome-vfs libraries to access the remote archives over standard networking protocols. That
means that if gnome-vfs can see an archive, then ArX can as well. In particular, ArX can
access remote archives using http with webDAV, ftp, ssh, and sftp'. In addition, if you can
not install webDAV, there is an option to use http with explicit lists.

The first thing that you have to do is set up the (s)ftp, ssh, or http server on the remote
machine. ArX does NOT have to be installed.

'For sftp to work, you must have auto-login enabled.

18

5.1.3.1 HTTP with webDAV

There are two ways that http access can work. ArX needs to list directories, and plain http
does not provide that. HT'TP with webDAV is the recommended and most reliable way.

To configure webDAV with apache, this usually involves installing the mod dav module.
This will work with Apache 1.3 or later. It does not require Apache 2. Then you have to
add something like the following to the conf file for apache:

<Directory /home/*/public_html>
DAV On
AllowOverride FileInfo AuthConfig Limit
Options MultiViews Indexes SymLinksIfOwnerMatch IncludesNoExec
<Limit GET POST OPTIONS PROPFIND>
Order allow,deny
Allow from all
</Limit>
<Limit PUT DELETE PATCH PROPPATCH MKCOL COPY MOVE LOCK UNLOCK>
Order deny,allow
Deny from all
</Limit>
</Directory>

You might have to change the first line of that to make it point to where your archives are.

5.1.3.2 HTTP with Explicit lists

If you are unable to install webdav support on your server, you can also generate .listing
files that contain a listing of a directory. You do this with update-listing. For example,
once you have created an archive, you can tell ArX to keep the .listing files to the archive
up-to-date with a command like

arx update-listing -a sftp://dquixote@example.org/public_html/archive
For long latency links, this can significantly increase the time to commit and mirror. If you
no longer need to keep the .listing files up-to-date, then

arx update-listing -d sftp://dquixote@example.org/public_html/archive

will stop ArX from updating them.

5.1.3.3 Accessing the Archives

To access archives, just use the ordinary URI notation. Specifically

19

ftp://[user@]host/dir
sftp://[user@lhost/dir
ssh://[user@]host/dir
http://[user@lhost[:port]/dir
https://[user@lhost[:port]/dir
dav://[user@lhost[:port]/dir?

ArX saves the locations in your .arx directory. For ftp and http, passwords are still

transferred in plain text. So securely writing to remote archives requires you to use sftp,

ssh, or https. Note that the same archive can be registered using different protocols.

For example, suppose that you have a website on the machine example.org rooted at
/home/dcoyote/public_html/archive. Through a web browser, it appears at http://example.org/~dco
Since you can log in to the sftp server, you can register the archive as

arx archives --add sftp://dcoyote@example.org//home/dcoyote/public_html/archive
while someone who wanted just read access could register it as
arx archives --add http://example.org/~dcoyote/archive

Note that ArX automatically gets the name of the archive from the archive itself. In fact,
in general you do not have to register archives at all, since ArX will automatically register
them for you. For example, to browse the previous archive, you can type

arx browse http://example.org/~dcoyote/archive/
The trailing slash “/” is required so that ArX doesn’t look for an archive at
http://example.org/~dcoyote/

with a branch named archive.

5.1.4 Mirrors

Suppose that you do all of your work on a laptop, but you also have access to a web server.
To share your work with the world, you want to copy your laptop archive to the web server.
Alternately, suppose that someone else has published an archive. You would like to have
a local copy on your laptop for when you don’t have access to the network. You can use
mirrors to manage copies of archives.

Mirrors are not true copies, in that there are certain restrictions when using them. In
particular, you can not commit new revisions to an archive. This prevent the case where
one person commits a revision to the master archive, and another person commits a revision
with the same name to the mirror. Having two different revisions with the same name but
different contents will cause confusion, so ArX prevents it.

2This is only to access webdav repositories using gnome-vfs 2.10 or greater. Previous versions of gnome-vfs
just use the http:// notation.

20

5.1.4.1 Publishing a local archive

As a concrete example, suppose you have an archive locally and a remote machine that you
can access through sftp which also serves as a web server. Then the local archive named
dcoyote@example.org-archive might be at

file:///home/dcoyote/archive/

The remote archive could be at
sftp://dcoyote@example.org//home/dcoyote/public_html/archive/

and it can also be accessed by the web at
http://example.org/~dcoyote/archive/

To create the remote mirror, it is

arx make-archive --mirror dcoyote@example-archive \
sftp://dcoyoteQexample.org//home/dcoyote/public_html/archive

Since the remote archive will also be available over plain http, you need to tell ArX to update
the .listing files

arx update-listing -a sftp://dcoyote@example.org//home/dcoyote/public_html/archive
Now if you look at the archive registration, you will see

$ arx archives dcoyote@example.org-archive
dcoyote@example.org-archive
file:///home/dcoyote/archive
sftp://dcoyoteQexample.org//home/dcoyote/public_html/archive

So the single archive dcoyote@example.org—archive has two locations associated with it. The
first listed location will always be the one used for get, commit, etc., unless you specifically
use the other uri. For example,

arx get dcoyote@example.org-archive/foo

will use the local (file:///) archive to complete the get. If you want to test the mirror, you
can use the uri instead of the name

arx get sftp://dcoyote@example.org//home/dcoyote/public_html/archive/foo

and ArX will get the foo project from the remote mirror.
Finally, to populate the mirror, you use the mirror command and specify the source and
destination

21

arx mirror dcoyote@example-archive/ \
file:///home/dcoyote/archive \
sftp://dcoyote@example.org//home/dcoyote/public_html/archive

This can get quite tedious to type, so you can shorten the uri’s as long as they are unique.
That is

arx mirror dcoyote@example-archive/ file sftp
will do the same thing, as will even
arx mirror dcoyote@example-archive/ f s

By default, ArX will mirror everything from one archive to the other. You can restrict what
will be mirrored by adding it to the archive name. So if you have the projects foo and bar,

arx mirror dcoyote@example-archive/foo file sftp

will only mirror project foo.
Finally, for other people to access it, they will register the archive with the http uri

arx archives -a http://example.org/~dcoyote/archive
You can also register this location, in which case the output of arx archives would be

dcoyote@example--projects
file:///home/dcoyote/archive
sftp://dcoyoteQexample.org//home/dcoyote/public_html/archive
http://example.org/~dcoyote/archive

This might be useful to check that the .listing files have been updated correctly.

5.1.4.2 Making a local copy of a remote archive

Another case where mirroring might come in handy is if there is a remote mirror that you
want to make a local copy of. Working from the above example, suppose you are Sancho
Panza, and you want to have a local copy of Don Quixote’s archive. You might do this
so that you don’t have to wait on the network, or you might want to work where you are
disconnected from the network entirely. So you would start with an archive registration like

dcoyote@example-archive
http://example.org/~dcoyote/archive

To make a local archive, you might do something like

arx make-archive --mirror dcoyote@example.org-archive \
file:///home/spanza/dquixote-archive

22

Then populating it would be
arx mirror dcoyote@example.org-archive/ http file
This will give you an archive registration like

dcoyote@example-archive
http://example.org/~dcoyote/archive
file:///home/spanza/dquixote-archive

But this is not quite what you want. When ArX does a get, it will default to looking at
the remote archive. To make ArX default to looking at the local mirror, you can use the
--make-default option to archives

arx archives --make-default dcoyote@example--projects file

Once again, you can abbreviate the uri. This will put the file:/// uri first, so the regis-
tration will become

dcoyote@example--projects
file:///home/spanza/dquixote-archive
http://example.org/~dcoyote/archive

5.2 Branching and Merging

Suppose someone (Bob) is writing a sorting program, such as the unix sort(1). Bob just
started, so he has only implemented a generic bubble sort. That works well enough for Bob,
so he is now concentrating on improving the option handling. Alice, on the other hand, likes
Bob’s program, but needs a faster sorting algorithm. So she wants to work on improving
the sorting algorithm while Bob works on the option handling. Eventually, either Bob will
merge Alice’s work back into the original program, or Alice will merge Bob’s work into her
version. ArX handles this sort of situation with branches and merges.

5.2.1 Initial Branching

So let’s start again from the beginning. Bob has written a sorting program and published it
as bob@foo.org/sort.bob. It currently has 23 revisions from bob@foo.org/sort.bob,0 to
bob@foo.org/sort.bob,22., as shown in Figure 5.1.

Alice wants to start from the most recent revision, 22, to implement the new sorting
algorithm. To do that, she creates a branch in her own archive alice@bar.org. She will create
a branch called sort.bob.quick to denote that she is working on a quicksort implementation.
To create the branch, she starts by typing

arx get bob@foo.org/sort.bob sort_quick
cd sort_quick
arx fork alice@bar.org/sort.bob.quick

23

| bob@foo.org/sort.bob,0 |

\ bob@foo.0rg/sort.bob,1 \

\bob@foo.org/sort.bob,z \

\bob@foo.org/sort.bob,zz \

Figure 5.1: Bob’s original revisions

| bob@foo.org/sort.bob,0 |

\bob@foo.org/sort.bob,l \

\bob@foo.org/sort.bob,z \

\bob@foo.org/sort.bob,zz }—»{ alice@bar.org/sort.bob.quick,0 \

| alice@bar.org/sort.bob.quick,1 |

| alice@bar.org/sort.bob.quick,2 |

| alice@bar.org/sort.bob.quick,3 |

Figure 5.2: Alice’s branch

This will create a directory sort_quick with the new branch, but not commit anything to
the archive. To actually create the new branch in the archive, she just commits

arx commit -s ‘branch to implement quicksort”

Now she can use the usual commands to make successive revisions, giving Figure 5.2.

5.2.2 Merge

So Alice is happily hacking along, ripping out the bubble sort and implementing the new
quick sort. In the meantime, Bob has not been idle. He implemented some fancy new option
parsing with five new revisions, 23, 24, 25, 26 and 27. Alice is not entirely sure what Bob
has been up to, but she can find out with missing. She types

arx missing bob@foo.org/sort.bob

24

and ArX will print out all of the patches that she doesn’t have yet (patches 23, 24, 25, 26,
and 27). She looks at those changes, and decides to incorporate all of those changes into her
branch. So she merges those changes in

arx merge bob@foo.org/sort.bob

There are a number of ways that changes can conflict (see Appendix B). By default, ArX
uses a three-way merge to apply the changes in Bob’s tree to Alice’s tree. ArX can also
merge by looking at the patches that Bob has applied to make bob@foo.org/sort.bob,22
become bob@foo .org/sort.bob,27, gathering it into one big patch and applying it to Alice’s
sort_quick tree.

arx merge --algo patch bob@foo.org/sort.bob

Either method is fairly sophisticated, handling a number of cases automatically. For every-
thing but modification of file contents (i.e. renames, deletes, metadata changes), the two
methods are identical. For example, even if a file has moved, ArX will still know which file
to modify. But sometimes there are problems. Bob may have made incompatible changes to
a file that Alice modified.

The three-way merge is slightly better at avoiding conflicts, so it is the default. But
when conflicts are inevitable, the real difference between the two methods is how conflicts
are resolved. When there are conflicts in file contents, the three-way merge method will leave
four files in the project tree: The original tree file, the sibling file, the ancestor file, and the
output of diff3 when it tried to merge the three. The diff3 file has inline conflict markers
similar to what CVS conflicts give. To resolve the conflict, you can edit the diff3 output and
remove the other three files. You can also run a GUI three-way merge tool on the three files:
tree, ancestor, and sibling. You can even have ArX pop up a merge tool automatically when
it detects conflicts. See Appendix C for details.

When there are conflicts using the big cumulative patch method, ArX leaves three files:
the original tree file, a modified file with as many of the hunks of the patch applied as
possible, and a file with the rejected hunks.

For any conflict, ArX will print out an error message detailing what went wrong. Alice
can retrieve these messages with arx resolve. Once Alice cleans up all of the problems,
she must tell ArX that the conflicts have been resolved with arx resolve. Only then will
she be able to commit

arx commit -s ‘Merge from sort.bob,27’

Her branch will then incorporate Bob’s improvements, giving Figure 5.3.

5.2.3 Replay

The merge command looks at the differences as a large, amalgamated whole. Sometimes,
it can be advantageous to consider differences patch by patch. This is what replay does. If
Alice had instead typed

25

\bob@foo.org/sort.bob,o \

| bob@foo.org/sort.bob,1 |

| bob@foo.org/sort.bob,2 |

| bob@foo.org/sort.bob,22 |—» alice@bar.org/sort.bob.quick,0 |

| bob@foo.org/sort.bob,23 | | alice@bar.org/sort.bob.quick,1 |
\bob@foo.org/sort.bob,24 \ \aIice@bar.org/sort.bob.quick,2 \
| bob@foo.org/sort.bob,25 | | alice@bar.org/sort.bob.quick,3 |

| bob@foo.org/sort.bob,26 }_r alice@bar.org/sort.bob.quick,4 |

\ bob@foo.org/sort.bob,27

Figure 5.3: Alice’s branch updated with Bob’s improvements

arx replay bob@foo.org/sort.bob

then ArX would instead have tried to first apply patch 23 onto Alice’s tree, then patch 24,
then patch 25, etc. If, along the way, any of those patches caused a conflict, ArX stops with
that patch and lets you fix up the tree before continuing. For example, suppose patch 24
had a conflict. sort_quick will contain the result of ArX’s attempt to patch up to patch
24. Once Alice fixed up the sort_quick directory, she can just repeat the same command

arx replay bob@foo.org/sort.bob

and ArX will attempt to continue the update. If there are other conflicts, Alice can continue
fixing conflicts and repeating the update until she reaches Bob’s current version. Assuming
that Alice resolved conflicts the same way, this should give exactly the same result as Figure
5.3.

However, replay also offers the possibility of selectively applying patches. Suppose Alice
didn’t like all of Bob’s patches, but only liked patches 25 and 27. She could have incorporated
those changes, and only those changes, with the commands

arx replay --exact bob@foo.org/sort.bob,25
arx replay --exact bob@foo.org/sort.bob,27

This will apply patches 25 and 27 to the tree. She can also do it in one go by putting the
patches names in a file and using the --1ist option.

Unfortunately, once she uses selective patching, she can’t use merge or replay in their
generic form anymore. They will both want to incorporate the patches that she deliberately

26

\bob@foo.org/sort.bob,o \

| bob@foo.org/sort.bob,1 |

| bob@foo.org/sort.bob,2 |

| bob@foo.org/sort.bob,22 |— alice@bar.org/sort.bob.quick,0 |

| bob@foo.org/sort.bob,23 | | alice@bar.org/sort.bob.quick,1 |
\bob@foo.org/sort.bob,24 \ \aIice@bar.org/sort.bob.quick,2 \
| bob@foo.org/sort.bob,25 | | alice@bar.org/sort.bob.quick,3 |

| bob@foo.org/sort.bob,26 }_r alice@bar.org/sort.bob.quick,4 |

\ bob@foo.org/sort.bob,27 \ alice@bar.org/sort.bob.quick,5 \

| bob@foo.org/sort.bob,28 | | alice@bar.org/sort.bob.quick,6 |

| bob@foo.org/sort.bob,29 | J—{ alice@bar.org/sort.bob.quick,7 |

\bob@foo.org/sort.bob,SO \

Figure 5.4: Bob’s branch star-merged with Alice’s

skipped. ArX currently does not have a means of marking certain patches as unwanted. If
she wants to continue to get updates from Bob, she will always have to use the --exact or
--list options.

5.2.4 Merging Back

Alice can continue hacking, using merge or replay to update her branch with Bob’s changes.
Eventually, Bob may want to integrate Alice’s changes. This is as simple as

arx merge alice@bar.org/sort.bob.quick

This will incorporate all of Alice’s patches. ArX is smart enough to know that it really only
needs the patches after patch 27 from Bob, because alice@bar.org/sort.bob.quick,4
integrated Bob’s branch up to patch 27 into Alice’s. As usual, this patching may cause a
conflict. Once that is cleaned up, a commit will lead to Figure 5.4.

As Alice and Bob continue improving their respective branches, they can continue to
merge with each other with merge.

27

5.2.5 Bug Fix Branches

There are other reasons for making a branch. If you have made a release of your soft-
ware, and want to fix issues in that release without affecting current development, then
you can branch from that release. For example, suppose that Bob had made a release of
bob@foo.org/sort.bob,20°. Later, after Bob has merged in the support for Alice’s work
on quick sort, someone finds a bug in his implementation of bubble sort (how embarrasing!).
Bob can’t make the fix in the current line of development, because the bubble sort has been
removed. Bob also can’t release the current line of development because the project is not
in a releaseable state. Instead, he branches from the release and fixes the bug on the branch.
Specifically

arx get bob@foo.org/sort.bob,20 fixed
cd fixed

(fix the bubble sort bug)

arx fork bob@foo.org/sort.bob.fixed
arx commit -s ‘Fixed the bubble sort”

Bob can now make a new release with bob@foo.org/sort.bob.fixed,0, and it will only
have the fix to the bubble sort bug.

If it turns out that the bug has already been fixed in the current line of development,
Bob can pull in just that change. For example, if there is a typo in the help screen that has
been fixed in bob@foo.org/sort.bob, 30, then Bob can apply just that patch with

arx replay --exact bob@foo.org/sort.bob,30

See also Section 5.8.2 for how to apply patches with even finer granularity.

5.3 Remote Cooperation and Publishing Your Work

5.3.1 Tags
5.3.1.1 Release Markers

If you wish to distribute your work, you can create and update a mirror as described in
section 5.1.4. Then other people can register your archive and get the latest revision using
arx get. However, people may not want to continuously follow every little spelling and off-
by-one bugfix. They only want significant, well-tested improvements. You can accommodate
them by using symbolic names to mark certain revisions as stable. For example, consider
the situation given in Figure 5.1. If Bob is happy with the state of the tree at that point,
then he can create a release marker with

arx tag bob@foo.org/sort.bob.release bob@foo.org/sort.bob

31t is usually best to use tags (Section 5.3.1) to mark releases rather than using a specific revision number.

28

This creates a revision, bob@foo.org/sort.bob.release,0, which acts as a symbolic name

for the last revision of bob@foo .org/sort.bob (in this case, that would be bob@foo.org/sort.bob,22).
Bob can run this command whenever he wants to make a release. An interested user can get

the latest release with

arx get bob@foo.org/sort.bob.release

Because bob@foo.org/sort.bob.release is just a symbolic name, you can not fork directly
from it. Rather, you must fork from the referenced revision.

You can also use tags to just give a different name for a particular revision. For example,
suppose you had a branch myproduct, and your marketing experts wanted to name the next
version v0.0.1. Then

arx tag myproduct myproduct.v0.0.1
will create a revision that you can get with

arx get myproduct.v0.0.1

5.3.1.2 Collections

You can also use tag to mark a collection of projects. So if you have the directory structure

foo ----> Contains the project foo.main
foo/bar ----> Contains the project bar.main

then you can mark the whole collection of projects with
arx tag foo.collection foo.main bar.main bar

That is, you first specify the head project (foo.main). For the tail projects, you specify the
project name (bar.main), and the subdirectory that it goes into (bar). Then

arx get foo.collection

will download both foo.main and bar.main, and put bar.main into the bar subdirectory
of foo.main.

You can have as many sub-projects as you wish. For large, complicated projects, you can
read in a list of projects from a file. The format is

tag-name
head-project
sub-project sub-dir
sub-project sub-dir

Then you read it in with

arx tag -f FILE

29

5.3.1.3 Floating Tags

With these large, complicated projects, another problem emerges. When you define a tag,
it will point to a particular revision. In the previous section, running

arx tag foo.collection foo.main bar.main bar

will create a tag foo.collection,0 that points to the last revision of foo.main (perhaps
foo.main, 12) and the last revision of bar.main (perhaps bar.main,7). If you continue to
work on foo.main and bar.main, then running

arx get foo.collection

will always give you foo.main, 12 and bar.main,7. On the other hand, if you use a floating
tag

arx tag --float foo.head foo.main bar.main bar

then foo.head will always point to the latest revisions of foo.main and bar.main. You can
now always get the latest version of the entire collection with

arx get foo.head
If you just want to update a copy of the tree, then it is just

arx merge foo.head

5.3.1.4 Limitations

Tags will show up as ordinary branches in arx browse, but they have a few restrictions. In
particular, tree-cache, replay, fork, file-diff, file-orig, file-undo, and get-patch
will not work with tags. diff does not work directly with tags, but there is a --recursive
option to handle collective tags. archive-cache, get, export, missing, and merge will
work even with collective tags. So get gets all of the different projects, merge updates the
main project and subprojects, etc. merge also has a --recursive option, which updates all
of the subdirectories, not just the ones listed in the tag. The --recursive is equivalent to
running merge in each subdirectory. So it will not update a subdirectory to a new branch,
while using merging with a tag could.

5.3.2 export

You may decide that you do not want to make people use ArX just to get a revision. Even
without other people involved, you may want to use your work in different environments
that do not have ArX installed. export can create a tree without any of the ArX control
files and, for your convenience, a tarball of this tree. For example, if the latest revision of
hello.main is patch 6, then

arx export --tarball hello.main hello

will create a tarball in the current directory named hello.6.tar.gz. If you desire, you can
include GNU-style changelogs with the --changelog option. export will also work with
tagsb.3.1.

30

5.3.3 Applying patches directly

Sometimes it is useful to generate and apply patches directly. For example, you might fix a
bug in a project, but have no means of publishing the archive. So you want to just mail the
patch directly to the upstream author.

arx diff -o diffdir

will create a patch in the diffdir directory. You can simply tar up that directory and mail
it.

If you have made your own archive with several patches, you can still bundle all of the
changes together with diff. You just supply diff with the last upstream revision. For
example, given the situation in Figure 5.2, Alice can create a patch of all of the work she
has done with

arx diff -o diffdir --revision bob@foo.org/sort.bob,22

Alternately, you may wish to give the patches back piecemeal, so that the upstream author
can take only what they want. You can get a specific patch with get-patch. So again with
the example in Figure 5.2, Alice can get all of the indiviual patches with

arx get-patch alice@bar.org/sort.bob.quick,0 alice.0
arx get-patch alice@bar.org/sort.bob.quick,1 alice.1l
arx get-patch alice@bar.org/sort.bob.quick,2 alice.2
arx get-patch alice@bar.org/sort.bob.quick,3 alice.3

This will put the patches into the directories alice.0, alice.1, alice.2, and alice.3.

If you want to put together some, but not all, of the patches, you can create a new
project tree with the upstream author’s latest version. Then you can apply the specific
patches with replay and diff will produce a patch that encompasses all of the changes.
With the Alice/Bob example

arx get bob@foo.org/sort.bob,22 sort

cd sort

arx replay --exact alice@bar.org/sort.bob.quick,1
arx replay --exact alice@bar.org/sort.bob.quick,3
arx diff -o patch_1_3

This will put a patch in the directory patch_1_3 which agglomerates the patches alice@bar.org/sort.bob
and alice@bar.org/sort.bob.quick,1.
On the receiving end, if the original author has a project tree in directory foo and the
patch unpacked into the directory diffdir, then
arx dopatch diffdir foo

will apply the patch.

31

5.3.4 Multiple commiters (a la CVS)

If you have a particularly large, active project, you may have many different people updating
various parts concurrently. You want to allow the main development branch to be updated
by multiple people. This is the usual style of development with large projects using CVS.
There are a few ways to do this in ArX.

The first is to just make the archive directly writeable by all of the developers. If you
are all in the same place, you might do this with NFS. However, you do have to be careful
with permissions and umask. Otherwise, one developer committing changes may make it
impossible for other developers to commit.

If you are in separate places, you can give all of the developers accounts to a shared
filesystem, once again being careful about permissions and umask. If permissions and umask
problems are insurmountable, or you do not wish to make new accounts for every person
who is vaguely interested in the project, then you can make a single account that all of the
developers can use to update the archive with sftp. That means making a new account for
each project. It also makes it more difficult to audit the activity in the source tree, since
there is only one user-id associated with all of the changes.

One solution is to designate a person as an integrator. Developers branch off of the
integrator’s main line of development. When the developer is ready, they send a merge
request to the integrator. The integrator applies the change to a test tree, runs any tests,
and commits. This solution is nice in that it does not require giving out accounts to anyone.
However, with a busy project, the integrator can get overwhelmed.

Fortunately, this process can be automated with a patch queue manager (PQM). A nice
PQM is bundled with ArX in the tools/pgm directory. The idea is to have a special PQM
account that manages the main line of development. Then developers branch off of this
main line of development. When the developer is ready, they send a merge request to the
PQM account (e.g. through a signed email). The PQM account attempts the merge, and,
if successful, commits the change. If the merge fails because of conflicts, then nothing is
committed. More documentation can be found in tools/pqm.

5.4 Reverting development

Sometimes, you want to undo some of the changes that you have made.

5.4.1 Before you commit

If you haven’t committed the change to the archive and you only want to revert one file, you
can use file-undo. That is, to undo the changes made to file foo, you would type

arx file-undo foo

However, file-undo will not work properly if you deleted the file with “arx rm” or moved it
with “arx mv”. You can also decide to undo a file back to a particular revision by specifying
that revision

arx file-undo foo hello.main.1.0,11

32

Using a revision other than the most recent may require ArX to get that old revision, which
can be time consuming. If this is a problem, you can add that revision to your pristine trees.

If you want to undo the changes made to a number of files, or you used “arx rm” or
“arx mv” on a file you want to undo, then you have to use undo with those paths as extra
arguments. That is, if you want to undo the files foo and bar plus everything in the directory
bat, you can use the command

arx undo foo bar bat/

If the changes in the directory bat/ depend on changes elsewhere, then ArX will let you
know what you need to include. If you want to undo everything that has been done since
the last commit, just use undo without any arguments.

file-undo will store a copy of the old file in ,file-name, so you can get back your changes
by copying that file back. undo will store the changes in a directory ,undo-N, with N being
the smallest number not already taken. To get the changes back, you can use redo. If you
don’t give redo any arguments, redo will just use the largest numbered ,,undo-N directory.
Of course, if you decide that you really don’t need the changes, you can simply delete the
Jfile-name files and ,,undo-N directories. ArX will never delete them itself.

In summary, file-undo is nice for changes to a single file, because ArX keeps a complete
copy of the modified file around. undo only keeps a copy of the differences between the
original file and the modified file. file-undo also works for any revision, while undo only
works for the current revision. However, there are times when file-undo will not work,
while undo always works.

5.4.2 After you commit

If you have already committed the changes to an archive, then there are two ways of reverting
those changes: Non-destructive and Destructive.

5.4.2.1 Non-destructive revert

If you decide that you need to revert changes that have already been committed to an
archive, then you need to use the --add option to history. This will make it look like a tree
has the patches for a particular revision without actually applying them. So, for example,
suppose you really want the most recent revision to look like hello.main,12, but you made
some ill-considered changes in patches 13 and 14, then you could run

arx get hello.main,12 hello

cd hello

arx history --add hello.main

arx commit -s ‘Reverted patches 13 and 14

That will create revision patch 15 which will look exactly like revision patch 12 except for
the history. Then, if it turns out later that patches 13 and 14 were not such a bad idea, you
can still get them.

33

This also lends itself to more complicated scenarios, where not everything in patches
13 and 14 was bad. For example, suppose the changes to directory bat/ were good, but
everything else was bad. Then you can use the sequence

arx get hello.main,12 hello

cd hello

arx history --add hello.main

arx undo bat/

arx commit -s ‘‘Removed everything in patch 13 and 14 except changes to bat”

This preserves the changes to bat/ but not anything else.

Finally, you can use history --add just to synchronize development. Consider a branch
hello.branch that, for whatever reason, you want to make exactly the same as hello.main.
Perhaps all of the changes that were in hello.branch got integrated in various ways into
hello.main, and you now want to re-sync hello.branch. You can accomplish this with

arx get hello.main hello

cd hello

arx history --add hello.branch

arx tree-version hello.branch

arx commit -s ‘‘Synchronize with main”’

Most of the time, though, you would probably just abandon the old branch and make a new
one. Otherwise, people may get confused by a branch that changes meaning.

5.4.2.2 Destructive revert

You may have accidently committed a file that is extremely large, has corporate secrets, is
illegal to distribute, etc. In those cases, you will want to do a destructive revert of your
changes and reclaim the space. ArX does not allow you to just remove a revision. That is
because someone may have forked from there, and if you replace one revision with a different
one, then ArX will get very confused. Essentially, ArX is trying to keep you from changing
history.

As an example, suppose that revision f00,23 has one of these undesirable files. You can
issue the command

arx delete-revision fo00,23
and ArX will print out a formatted version of the log and prompt you to continue. If you
do so, that revision will be replaced with an empty revision. It will have a log just stating
that it has been reverted. To continue development, fork from the previous revision

arx get fo00,22 new_foo

cd new_foo
arx fork foo

34

and work in the new_foo directory. If you didn’t notice the problem until after revisions
were added past foo,23, you can replay those patches

arx replay --exact --dir new_foo foo0,24
arx replay --exact --dir new_foo fo0o0,2b
arx replay --exact --dir new_foo foo0,2b

If you had just used merge, you will get the deleted log message. Not the end of the world,
but a minor annoyance.

If you want to delete an entire branch, then delete-branch will remove everything,
leaving no traces of that branch. For example,

arx delete-branch foo

will delete everything in the branch foo, including any sub-branches such as foo.bar,
foo.bar.baz, etc. This is a powerful command, and ArX prompts you before deleting.

5.5 Properties

5.5.1 Preserving File Permissions

ArX allows you to assign arbitrary properties to paths. The primary application for this
within ArX is to version permissions. For example, if you want to make sure that the file
foo will have its executable bit set, then the command

arx property --set arx:user-exec true foo
will ensure that. At present, the following properties have predefined meanings

arx:user-read
arx:user-write
arx:user-exec
arx:group-read
arx:group-write
arx:group-exec
arx:other-read
arx:other-write
arx:other-exec

If any of these properties are set to true or false, then when that path is checked out (e.g.

with get), the appropriate permission bit is set (assuming the file system can accomodate
it).

35

5.5.2 User Defined Properties

You can also define your own properties. For example, you can assign a property that tells
you what kind of license a file is covered by. If you type

arx property --set license GPL foo
arx property --set license BSD bar

then the license for file foo is set to the GPL and the license for bar is set to the BSD license.
Note that, while the properties can be arbitrary, they are designed to work well when they
are small.

5.5.3 End-of-Line Conversion

By default, ArX does not do any conversion of the end-of-line markers used in files. In the
future, ArX may use the arx:eol-style property to do something similar to what Subversion
does?.

5.6 Hooks

One approach to quality control is to have a modified project tree go through a series of
automated tests before the modifications are stored in the archive. A simple example is to
make sure that the modified tree will build. Once the patch has gone through, you may wish
to automatically perform various actions, such as sending mail about a patch to interested
parties. ArX itself uses this feature to update the arx-changes list.

ArX supports these two needs through hooks. To use hooks, you create an executable file
in ”/.arx/hooks. It can be a shell, Python, or Perl script, or even a full blown C, C++, Java
or Lisp application. ArX invokes the hook both just before and just after it has altered an
archive by adding categories, branches, versions, or revisions. This occurs when you invoke
commit, tag, or mirror. ArX calls the hook with two arguments. The first argument is
either pre or post, indicating that the hook is being called either before or after altering the
archive. The second argument is one of make-branch or make-revision, indicating what
ArX is about to do or has done. That is, the call syntax looks like

~/.arx/hooks (prel|post) make-(branch|revision)

In addition, ArX sets the environment variables ARX_TREEROOT to the root of the project tree
(if applicable), ARX_PREVIOQUS_ARCHIVE, ARX_PREVIOUS_ARCHIVE_URI, ARX_PREVIOUS_BRANCH,
and ARX_PREVIOUS_REVISION to the archive, archive uri, branch, and revision of the pre-
vious revision, and ARX_ARCHIVE, ARX_ARCHIVE_URI, ARX_BRANCH, ARX_REVISION, and to
the archive, archive uri, branch, and revision involved. These can be queried to customize
how the hook behaves. As an example, the following shell script will send email about new
categories, branches, versions, and revisions in the wlandry@ucsd.edu--arx archive to the
arx-changes list

“http://svnbook.red-bean.com /en/1.1/svn-book.html#svn-ch-7-sect-2.3.5

36

#!/bin/sh
Simple mail of patch log
pre_post=$§1
action=$2
if test $pre_post = "post" ; then
if test $ARX_ARCHIVE = "wlandry@Qucsd.edu--arx" ; then
if test $ARX_ARCHIVE_URI = \
"sftp://landry@superbeast.ucsd.edu//home/landry/public_html/ArX/wlandry" ;
if test $action = "make-branch" ; then
printf "$ARX_ARCHIVE" | mail -s \
"New Branch: $ARX_BRANCH" arx-changes@nongnu.org
fi
if test $action = "make-revision" ; then
arx log --remote --formatted --branch $ARX_REVISION | mail -s \
"New Revision: $ARX_REVISION" arx-changes@nongnu.org
fi
fi
fi
fi

The hook script is executed within the current directory. This script will be executed when-
ever you alter any archive, so a long complicated script will slow these actions down. When
invoked before altering the archive, ArX waits for the hook script to return and aborts if it
returns non-zero. When invoked after altering the archive, ArX executes the hook script in
the background and ignores the return code. Post-commit hooks are never guaranteed to be
invoked. A well timed interrupt could let the transaction finish but prevent the hook from
running.

5.7 Patch Logs and Changelogs

When committing a change, ArX needs a log file with a Summary: field. If you use the -s
option to commit, then ArX will create a log file for you that contains that field. However,
you can also create your own log files with custom headers. There are some reserved headers
(such as Standard-date:, Renamed-files:, etc.) listed in the help for log, but otherwise you
can define any header you like. The log file uses an RFC-822 style format. A colon separates
the header and the field, and the field is terminated by a newline that is not followed by a
tab. The body is separated from the headers by a blank line. As an example,

Summary: Frozzled the foo

Mail-results-to: don@example.org, sancho@example.com,
dulcinea@example.net

Bug-Number: 1605

The foo was blarged by the bar, so I had to frozzle the foo in order to
unmome the borogoves.

37

You can then specify that log file with the --log-file option to commit.

ArX adds some reserved fields and stores the log as part of the patch. These logs then
become part of the revision. When you make a branch, your logs for that new revision appear
in the project tree. You can see what versions have gone into a project tree with history.
For each of the versions that it lists, you can find out which patches are included with log.
log also lets you look at specific headers. A simple example is to look at the New-files:
field for all of the patches for the current version of the tree

arx log --header Revision --header New-files

The Revision header is included because otherwise there is no way to tell which new files
belong to which revision.

You can also do more complicated things, such as finding when foo.bar.1.0,112 was created
and by whom

arx log --header Standard-date --header Creator \
--branch foo.bar.1.0,112

You can use the --remote option to look at logs for revisions that you don’t have in a project
tree. For example, if you were unsure whether you wanted to get those revisions at all.

5.8 Making Patches Bigger or Smaller

ArX currently does not support directly breaking up one patch into smaller patches or
composing multiple patches into one big patch. You can achieve the same effect through
some workarounds.

5.8.1 Selective commits

Suppose you are happily working on one feature, but along the way you notice and fix a bug
in unrelated functionality. You would like to separate the bug fix from the ongoing feature
work. Usually, the best way to do this is with extra path arguments to commit. For example,
if the features are in file foo, and the bug fix is in file bar, then “arx commit bar” will only
commit, the changes in file bar. You can also select files that have been added, moved, and
deleted. ArX performs thorough checks to make sure that you always commit a valid patch.
For example, if you were not careful, you might commit a file that is in a directory that does
not yet exist in the archive. If you try to make ArX do this, then ArX will tell you what
paths need to be added the argument list.

If the separation between bug fix and feature is not so clean, such as if the changes occur
in the same file, then you can use undo. You run undo on the whole directory, make and
commit the bug fix, then redo to get back the work you’ve done. More information on
undo/redo is in Section 5.4.

38

5.8.2 Breaking up patches

Suppose that someone has created a humongous, all-singing, all-dancing patch that adds 12
features, fixes 30 bugs , and, of course, introduces its own. You are only interested in a
particular feature which is localized to files fool, foo2, foo3, etc. To get just the changes to
these files, you can do something like

arx replay --exact bar.big-patches,13
arx undo -o foo_undo fool foo02 foo3d ...
arx undo

arx redo foo_undo

This gets the patch, applies it to your own tree, selectively reverts the feature you want,
reverts everything else, and then reapplies the desired feature.

5.8.3 Agglomerating patches

Suppose you have a project foo.main, and you want to make a patch that includes patches
122, 133, and 156 all as one big patch. You can do it with something like

arx get foo.main,121 foo

cd foo

arx replay --exact foo.main, 122

arx replay --exact foo.main, 133

arx replay --exact foo.main, 156

arx diff -o big_patch --revision foo.main,121

This gets revision 121, applies the various patches selectively, and then puts the agglomerated
patch into the directory big_patch.

5.9 Working with Large Trees

5.9.1 arx edit

By default, ArX is set up to be very careful when looking for changes. This means that ArX
has to look at the contents of every file before it can decide whether it has changed. This
can be prohibitively slow for large projects. So ArX offers another mode of operation where
you can promise not to edit a file unless you specifically tell ArX. This approach is similar
to what Perforce and Bitkeeper do.

You can take advantage of this mode of operation by using the --no-edit option to
get. ArX will download the revision and then change the permissions on all of the files to
read-only. To edit a file, you have to run arx edit and ArX will change the file to writeable.
Then, when you run arx commit, ArX will once again mark the files as read-only. You do
not have to run arx edit in order for arx rm, arx mv, and arx property to work.

The advantage of this is that when ArX figures out what you have changed for diff or
commit, ArX only has to look at the short list of files that you have marked (via edit, rm,

39

mv, and property). This can reduce the time for these common operations from minutes to
near-instantaneous. However, some people find this mode of operation incredibly annoying.
Others hardly notice it. You only need to use it if you are running into problems. In general,
if your project tree is in memory, ArX humms right along. However, if the project tree is
not in memory, ArX has to load it from disk which can take a rather long time. Whether
your tree is in memory depends on your individual work patterns.

If you decide that you want to always work in this mode of operation, you can set to
true the no-edit parameter in arx param. Then get will always run as if the --no-edit
option is present.

5.9.2 link-tree

In addition to the --no-edit option, there is a --link-tree option. It is only useful with
the --no-edit option. The --link-tree option will use hard links when getting a tree,
reducing both the space and time required. However, because it links with cached revisions,
write permissions in the cache will get modified as well. This means that versioned write
permissions will, in general, be unreliable. If it turns out that write permissions are not
important for your project (as is often the case), then --link-tree could well be a useful
option. Like no-edit, you can set the link-tree parameter in arx param to make hard
linked trees the default.

5.9.3 Timestamps

Another possible method that could have been used is to save timestamps of files on the
initial get. Then figuring out whether a file has changed means ArX would only have to
look at the timestamp of a file. You can also compare more than just timestamps (e.g. size).
This method is very popular, being used by TLA, Darcs, Subversion, CVS, and Stellation.
It is a little nicer interface, since you do not have to explicitly mark a file as editable before
editing.

However, it falls down on many common filesystems. Many filesystems have a timestamp
resolution of one second. That means that if you get a project tree and edit a file all within
one second, then that file will not show up as changed. Normally, people can not type that
fast, so it is not a problem. However, if you are using some kind of automatic patch robot
(as in section 5.3.4), then the robot will create a project tree and apply the patch. Some
changes to files may then be committed, and others not. In general, any kind of scripted use
can cause these problems.

These problems are not academic. All of the aforementioned version control systems have
had problems arising from these inexact timestamps. Darcs even has an --ignore-times
option, which is great if you remember to use it. Because of this inherent unreliability, ArX
does not implement this method.

40

5.10 Cryptographic Checksums and Signatures

5.10.1 Theory

Once data is stored in an archive, it may become modified or corrupted. These modifications
could be accidental (e.g. disk corruption) or intentional (e.g. someone trying to insert
malicious code).

To detect these modifications, the first thing that ArX uses is checksums. There are
two kinds of entities that get checksums in ArX: patches and revisions. A revision is just a
complete source tree, and a patch is what gets you from one revision to another. Patches
are simply tar'd, gzip'd file trees, and gzip has its own checksum. Revision checksums are
more complicated.

Whenever ArX stores a revision in the archive, it creates a manifest file. The manifest file
lists each path in the revision, its properties (set with arx property), and a cryptographic
checksum® of the path’s contents. ArX then computes a cryptographic checksum of the
entire manifest, and stores that into the archive. When someone downloads a particular
revision, ArX recreates the manifest file based on what it has downloaded. ArX then checks
the checksum of the newly created manifest file against the checksum in the archive. All of
this is completely automatic, and you won’t notice it unless something goes wrong.

However, while this may work great for catching errors due to corrupted hard drives
and bad memory, it won’t stop someone from deliberately inserting malicious code into the
archive. They can always replace the checksum while replacing the original patch. To solve
this, ArX uses cryptographic signatures.

Once again, both revisions and patches can be signed. Patches are signed directly by
storing a detached signature of the patch file in the archive. Revisions are signed indirectly
by storing a detached signature of the revision checksum in the archive. In addition, ArX
stores in the archive a list of cryptographic keys that are allowed to sign revisions in that
archive.

So the first time a person downloads a revision or patch from a particular archive, ArX
will download the list of cryptographic keys. ArX will then download the actual revision or
patch and check to make sure that it is properly signed by someone in that list.

ArX uses Gnu Privacy Guard (gpg) to do the actual creation and verification of signa-
tures. This has an advantage over other types of signatures (e.g. X.509) in that a number of
people already have a gpg key. An X.509 certificate would just be another secret to protect,
another password to remember, etc. In addition, your gpg public key may be already be
known to the recipient.

For those of you already using gpg, ArX does not use the usual web of trust. If you want
to download a revision from a random place on the web, you don’t want to have to extend
your trust for other things to this particular public key. Moreover, if someone manages
to compromise one person’s key, they may be able to subvert a larger number of projects.
However, this does mean that you should verify the public keys you download.

It should also be noted that, while ArX uses SHA-256, gpg may internally use something
weaker (e.g MD5 or SHA-1). If you are concerned, you should consult the gpg documentation

5 ArX uses SHA-256 for its cryptographic checksum. This checksum has no known weaknesses (as opposed
to MD5 or SHA-1), and should be sufficient for the next 50 years or so.

41

to make sure you are using a secure hash.

5.10.2 Practice

As noted before, you do not need to do anything for ArX to support checksums. ArX will
automatically create and validate all checksums and let you know if there are any problems.

To verify signatures of signed archives, you only need to have compiled ArX with gpg
support. ArX will automatically download public keys, and download and verify signatures.
You can use arx archives to see what public keys are associated with an archive and verify
that the keys are genuine. You can quickly verify the signatures for all of the revisions in a
branch with the sig command

arx sig dcoyote@example.orc/hello

To sign your own archives is where you have to do some work. Signatures are managed on
a per-archive basis. Either everything in the archive is signed, or nothing is. To create an
archive that will be signed, use the --key option to make-archive. For example

arx make-archive --key dcoyote@example.org \
dcoyote@example.org--archive archive

The argument to --key can also be a gpg fingerprint. If you want every archive you create
to be signed, then use arx param to set the gpg-key parameter to your gpg public key. This
will also set what your default key to sign archives will be.

Once you have a signed archive, ArX will ask for your gpg passphrase each time you
commit. This means that you will have to type in a passphrase twice each time you commit:
once for the patch and once for the revision. That can quickly get tedious. So you can tell
ArX to use a program such as quintuple-agent to store your password. For quintuple-agent,
that would be

arx param gpg agpg

Now ArX will use agpg when trying to sign and verify revisions. Quintuple-agent also
requires you to set up an agent, which you will have to do separately.
If you have already created an archive and you want to make it signed, you first need to
add your public key to the archive using a command like
arx sig --archive --add dcoyote@example.org--archive/
Then you can manually sign each patch and revision with something like
arx sig --add dcoyote@example.org--archive/hello,0

or just sign all the patches and revisions in a branch with

arx sig --add dcoyote@example.org--archive/hello

42

If you have any mirrors, you should delete them and re-mirror.

You can also delete a signature with the --delete option. All of these examples will add
or remove your default gpg public key set with arx param. To add or delete a different key,
use the --key option.

Finally, you need to let everyone else know that your archive is now signed. Other people
accessing the archive will not automatically update the list of keys to trust. So if you try to
sign revisions with the new key, they will not validate the signature. They must unregister
and reregister the archive.

5.11 Internationalization

ArX takes a laissez-faire attitude to internationalization. In particular, ArX treats everything
as a sequence of bytes, and does not attempt to convert anything into a canonical form (e.g.
UTF-8). So file contents can be in any encoding, and ArX will not care. If Gnu diff thinks
that a file is binary, then ArX will use a binary diff and patch. This prevents automatic
merging, but otherwise everything will work fine. Moreover, ArX does not do any line-ending
conversions for Windows and Unix clients.

The situation with file and directory names is more complex. ArX uses C Posix API’s such
as stat() which require null terminated strings. So if your file names have any embedded nulls,
you will quickly run into problems. What this means is that if you use UTF-8 everywhere,
then you should have no problems. With the various Latin encodings, all of the files will be
stored correctly, but they may not display correctly if someone has a different locale.

No guarantees are made for other encodings. In particular, Shift-JIS, Bigh, VISCII,
and KOI8 will probably have problems. Those encodings use the slash “/” character in a
multibyte character, which will make ArX think that the path is referencing a subdirectory.

5.12 Including one project within another

Suppose you have projects foo and bar, and you want to merge project bar into foo. That
is, you want all of the files in bar to be present in foo. All you need to do is move all of
the files in bar into foo with "arx mv”. Then you just syncronize the foo tree with bar with
history --add and then commit. All of the history will be preserved, even if patches are
applied from the old project.

5.13 Project Tree Inventories

5.13.1 Inventory Ids

When ArX is looking at a path, ArX wants to assign the path a unique identity that will
persist even when the path is renamed. ArX does this with inventory ids. An inventory id is
just an alternate name for a path. When a path is first introduced to ArX with “arx add”,
it will have an inventory id associated with it.

43

Type ‘ Stored in Archive? ‘ Created by ‘ tree-lint warning?

source Yes User No
control Yes ArX No
ignored No User No
unrecognized No User/ArX Yes

Table 5.1: Inventory Types

Inventory ids are contained inside a small file inside the _arx directory which you should
never deal directly with. When you need to move or delete the path associated with the
external inventory id file, you must use “arx mv” and “arx rm”. Otherwise ArX will get
confused.

If you do not explicitly add a path, then it will not get archived. tree-lint and
inventory come in handy here. If you do not use ArX to move and delete paths, then
ArX will notice when you try to commit and force you to fix it.

5.13.2 Inventory Types

When ArX looks at a project tree, it likes to divide the paths into various types. There
are five different types: nested tree, source, control, ignored, and unrecognized. A
nested tree is merely a project tree within a project tree. The other types require more
explanation.

These types come about because ArX has some decisions to make when looking at a file.
ArX has to decide whether a file will get stored into an archive. Files classified as source or
control are stored in the archive, everything else will not be. The only difference between
source and control is that you created the source paths, while ArX created the control
paths. For files that are not being archived, ArX has to know whether it should warn the
user during tree-lint. Only unrecognized files trigger warnings just by being classified
as unrecognized. This is summarized in Table 5.1.

The algorithm that ArX uses to classify a path is:

1. If the path is a directory and has an _arx subdirectory, then it is a nested tree.
2. If the path is in the _arx directory, then it is control.

3. If the path has an inventory id, then it is source.

4. If the path’s name matches with the regex for ignore, then it is ignore.

5. Otherwise, it is unrecognized.

“arx inventory” will print out a list of all of the paths and how they have been classified.
By default, inventory will not print out the control paths. The default regex for ignore
is empty. You can change it with “arx ignore”. For example, to change the ignore regex to
ignore files ending with .o, .bak, or 7, the command would be

arx ignore "~.*(.ol|.bak|7)$"

44

ArX uses Boost.Regex, which uses the regular expression syntax described in ECMA-262,
ECMAScript Language Specification, Chapter 15 part 10, RegExp (Regular Expression)
Objects (FWD.1).

5.14 Pristine Trees

ArX normally stores a complete copy of the project tree in the _arx directory. This allows
commands which need to compare against a previous revision, such as commit, diff, undo,
and file-undo, to complete quickly. Also, if ArX has to get a particular revision, it can
use that pristine tree as a base to start from instead of having to fetch everything from the
archive.

Usually, a project tree will only have the pristine tree of the latest revision. ArX will
automatically keep it up to date for you. Sometimes, you may find it useful to have pristine
trees from other revisions, such as revisions that have branched off of yours. You can query,
add, or remove pristine trees with tree-cache.

One problem with pristine trees is that they do take up more space. See section 5.9.2 for
one strategy for ameliorating that.

5.15 Additional Tools
Included with the ArX distribution are a few additional tools.

e A bash completion code to make typing many of the commands less onerous.
e An emacs mode which integrates ArX into the editor.

e A python script check_moved.py which is useful when importing patches from non-
ArX users. A diff can simulate a file rename by deleting and re-adding the file.
check_moved.py will detect that and fix up the internals of ArX to correctly track
that move.

e A patch-queue manager pgm. See Section 5.3.4.

45

Chapter 6

Beyond this manual

This manual has presented most of the commands available. If you want to find out what
all of the command’s are,

arx --help-commands

will print them out. By necessity, this manual has not plumbed all of the various options to
the commands. All of the commands have a help screen that can be accessed with the help
command.

46

Appendix A

Patch Algorithm

There are three possible relations between two objects: parent (p), child (c), and other (o).
A parent is a parent directory, child is a child directory, and other is something that is not in
the same hierarchy. Viewed this way, there are nine different possible ways to move things:

1. p->p
2. p->c
3. p->o0
4. c->p
d. C->cC
6. c->o0
7. 0->p
8. o->c¢

9. 0->0

We also want things that are in a directory that is being renamed or deleted to be automat-
ically renamed or deleted if they are not otherwise specified.

If someone doesn’t want things to be automatically deleted, then we can only delete
directories that are already empty, because the contents have all been eliminated.

The basic algorithm is:

1. Get a list of all renames and deletes, and sort it so that the bottom-most elements are
first. That is, if we have
a/
a/b/
a/c/
a/d/
a/b/c

47

a/c/c

Then it should get sorted as something like

a/d/

a/c/c

a/c

a/b/c

a/b

a/

Note that this is both renames and deletes. For example, a/c might be deleted and
a/c/c might be renamed.

. In this bottom-up ordering, we rename the deleted files to ,,delete-0, ,,delete-1, ...
and renamed files to ,,renamed-0, ,,renamed-1, ... in the temp directory. If a source
does not exist, complain and put a note somewhere.

. Figure out where a path should go. If the path is just being renamed (foo/a -> foo/b)
as opposed to being moved (foo/a -> bar/a), then just rename the path regardless
of its current parent. If it is just being moved, then move the path, regardless of its
current name. Note that ArX knows if a parent directory has been moved and puts
the path in the right place. If the destination parent does not exist, signal a conflict
and put the path in the destination given by the patch.

. Sort the destinations of the renames in a top-most fashion (opposite of bottom-up).
Move the renames into their destination using this ordering. If the destination exists,
rename the destination to (original name).orig. If _that exists, then we try .orig-1,
.orig-2, ...

. If we are removing deletes, then just delete all of the ,delete objects. If we are
keeping them, then do a similar rename for the ,,delete-* files, moving things to
a ,,removed-by-dopatch directory but it has the original name. There should be no
conflicts when doing this rename.

. Delete the temporary directory. There should be nothing in it.

. Apply regular and metadata patches to paths.

48

Appendix B

Conflicts

There are 12 different types of possible conflicts. Most of these types are related to moving
and renaming paths. One thing to keep in mind is that ArX handles renames (foo/a ->
foo/b) separately from moves (foo/a -> bar/a). So there can be conflicts related to the
parent directories separately from the renamed path.

1. Merge: There was a conflict when applying a three-way merge to a file. This is the
most common type of conflict when merging files, where two people make conflicting
changes to a single file. ArX prints out the locations of the partially merged file, the
original version in the tree, the ancestor’s version, and the sibling’s version. For exam-
ple, ArX might print out

foo foo.tree foo.ancestor foo.sibling

If a merge script exists (see Appendix C.1), ArX will invoke the script for these files.

2. Patch: There was a conflict when applying a patch to a file. This is the most common
type of conflict when using replay or the patch algorithm in merge, where two people
make differing changes to the same file. ArX prints out the locations of the file with
perhaps some parts of the patch applied, a copy of the file before it was patched, and
a copy of the rejected hunks of the patch. For example, it might print out

foo foo.orig foo.rej

If a patch-merge script exists (see Appendix C.2), then ArX will invoke the script
on these files.

3. xdelta: There was a conflict when applying a patch to a binary file. ArX uses the
xdelta algorithm to compute diffs between binary files, and patches to binary files only
work if the file is exactly what is expected. So there is no fuzz factor to allow for
modified files to be patched. ArX prints out the name of the file and the rejected
xdelta patch. For example, it might print out

foo foo.xdelta

49

Unfortunately, there is not much that you can do with .xdelta files. They use a
different format than the xdelta program.

. Move Target: The destination of a rename is already occupied. For example, if the
patch renames foo to bar, and bar already exists. ArX prints out the contended name
and where the original has been moved. In this example, ArX would print out

bar bar.orig

. Move Parent: The parent of a path that has been renamed has been changed in some
incompatible manner. For example, if a patch renames foo/a to bar/a, but the file is
in directory baz. ArX prints out the initial placement of the moved path, the patches
initial parent directory, and the patches destination parent directory. In this case, ArX
would print out

baz/a foo => bar

. Rename: The name of a path has been changed in some incompatible manner. For
example, if a patch renames foo/a to foo/b, but the file is already named foo/c. ArX
prints out the initial location of the moved path, the patches initial location of the
moved path, and the patches destination of the moved path. In this case, ArX would
print out

foo/c foo/a => foo/b

. Deleted Parent: The parent directory for the destination of a move has been deleted
by this patch. For example, suppose the patch moves foo/a -> bar/a and deletes the
directory baz, but bar has been moved into a subdirectory of baz. ArX prints out the
patches initial and final destination. In this case, ArX prints out

foo/a => bar/a

. No Parent: The parent directory for the destination of a move path has been deleted
outside of this patch. For example, if the patch moves foo/a to bar/a, but bar was
deleted before the patch was applied. This differs from a Deleted Parent conflict where
the parent directory is deleted in the patch itself. ArX prints out the patches initial
and final destination. In this case, ArX prints out

foo/a => bar/a

. Missing Moves: A path that is being moved seems to be missing. ArX will print out
the patches initial and destination location, and the path’s inventory id. For example,
it might print out

foo bar 32472534872abd896dc986de22f87de9fef997a97cbd97e9779824234827648d

20

10.

11.

12.

Missing Patches: A path that is being patch seems to be missing. ArX will print out
the patches path location.

Add: A path is being added with the same inventory id. For example, you might have
a path foo with the inventory id a9de. . ., and you are trying to add a path bar with
the same inventory id. ArX will print the path you are trying to add, the path that
conflicts with it, and the inventory id. For this example, ArX will print out

bar foo a9de...

Note that ArX will only signal a conflict if either the name or the content of the
path is different. So if you apply an ArX patch and then immediately reapply it, you
should not get any of these kinds of conflicts.

Directory Loop: ArX encountered a loop when trying to move a path. This conflict
happens when the patch tries to move a directory to its own subdirectory. For example,
suppose the patch moves foo -> bar/foo, but the tree already has foo/bar. If ArX
detects a directory loop, ArX will try to move everything back to where it was before.
This may cause additional conflicts if some parent directories are deleted. ArX will
print out the paths current location and the patch’s initial and destination locations.
For this example, ArX will print out

foo foo -> foo/bar/foo
foo/bar bar/foo -> bar/foo/bar/foo

Note that ArX inferred the move of foo/bar -> bar/foo/bar/foo.

ol

Appendix C

Sample Merge Scripts

C.1 Three way merges

ArX looks in 7 /.arx/merge3 for an executable merge script. The script is given four argu-
ments

1. The original tree file
2. The ancestor file
3. The sibling file

4. The destination tree file

C.1.1 Meld
rm u$4n
mnv u$1n u$4n

meld ¢¢$2n ¢¢$4n u$3n

C.1.2 Xxdiff

rm u$4n

xxdiff --titlel ancestor --title2 tree --title3 sibling -M ““$4”’ --show-merged-pane
C.1.3 kdiff3

rm ¢¢$4n

kdiff3 --L1 ancestor --L2 tree --L3 sibling -o ““$4 <$2° ““§1> <$3”

C.1.4 gvimdiff

rm ¢¢$4n
nv ¢¢$1n ¢¢$4n
ngmdlff u$2n u$4n u$3n

02

C.1.5 X/Emacs

rm u$4n
emacs --eval ‘“‘(ediff-merge-files-with-ancestor \”’$1\> \”’$3\” \’$2\”’ nil \7’$4\”’)”

C.2 Patch merges

ArX looks in 7 /.arx/patch-merge for an executable merge script. The script is given three
arguments

1. The original tree file
2. The .rej file

3. The .orig file

At present, the only tool that works well with .rej files is X/Emacs. The script for X/Emacs
is simply

emacs $2
The following is a recipe from Miles Bader for using emacs

If you're using an up-to-date version of emacs (I mean the original GNU Emacs,
I'm not sure about xemacs), it should enter diff-mode automatically when you
visit the .rej file. From there, there are several useful commands you can use, for
instance, putting the cursor in a diff ‘hunk’, and pressing ‘C-c C-¢’ will attempt
to jump to the corresponding location in the source file; typing ‘C-c C-a’ while
in a hunk will try to actually apply the hunk (and will fail if it can’t). Applying
a hunk from diff-mode sometimes succeeds where patch failed, though I'm not
exactly sure why, as it’s actually more strict about matching the original file (it
doesn’t do ‘fuzzy’ application).

So for instance a typical strategy I'll use is:
(1) Visit the .rej file in emacs; this will automatically be in diff-mode

(2) Make the buffer writable so I can modify the .rej file; this is just my personal
style, you don’t have to do this. diff-mode by default makes the buffer read-only,
but I like to delete each hunk successfully applied, to make bookkeeping easier
for big .rej files.

(3) Use the command ‘M-U’ first, which converts the .rej file into ‘unified diff’
format, which I find easier to read; again this is not necessary though, just

something I like (and of course the buffer must be writable from step (2) to do
this!).

For each hunk:

53

(3) Use C-c¢ C-a to try to apply the hunk; if application succeeds, delete the hunk
from the .rej file with ‘M-d’ (.rej buffer must be writable to do this), and go on
to next hunk, otherwise:

(4) Use C-c C-c to find the source location — this command will use line numbers
as a backup strategy, so it usually gets you at least close and see if there’s
some obvious problem where the source file has change from what the patch is
expecting.

(5) If there’s an obvious difference, say added code in the hunk’s context lines,
~ modify the hunk to match the source, making sure any new lines you add
to the hunk include appropriate diff line-start characters (* 7, '+, ’-’). diff-mode
will automatically make sure that the hunk line counts etc are kept up-to-date.
Of course this requires care, but I find it easier to think about the interaction
of changes if I keep the source file unchanged and update the hunk. If the hunk
then applies, then delete it and contine as in step (3).

(6) Sometimes diff generates really big hunks, which include many individual
changes, and are difficult to think about as a whole. For these, I often use the
diff-mode ‘C-¢ C-8’ command, to split the current hunk into two smaller hunks
at the current line (this only works in unified diff format, for obvious reasons),
and then deal with each smaller hunk individually. Sometimes, if you're not sure
where the problem in a big hunk is, you can use C-c¢ C-s to do a binary search
for the mismatch point (and use emacs’ undo command to undo any split that’s
not useful).

The above might sound a bit complicated, but really it’s not to bad once you
know the diff-mode commands.

The crucial thing I think, is that it’s much easier to handle non-trivial conflicts
with proper .rej files, compared to CVS conflict markers. the main reason I think,
is that patch is more conservative, and requires a certain amount of surrounding
context to match for a patch to be applied, and includes the failing context in
the .rej files so you can see what happened. Together with diff’s habit of merging
adjacent hunks into bigger hunks, this means that potentially problematic merges
are more likely to simply fail which is a good thing...

CVS requires _no context , and though this can be convenient for ‘obvious’
cases, by the time that you realize something is non-obvious, it’s already too
late, CVS has already applied a bunch of possibly incorrect changes, intermixed
with non-applied changes using context markers.

-Miles

04

(Glossary

archive A directory where revisions are stored. See Section 5.1

branch A specific line of development. See Section 5.1.1

inventory id A unique name for a path that persists across renames. See Section 5.13.1
path A file or directory. In many case, ArX treats files and directories in very similar ways.

project A collection of all of the various branches and revisions that make up a particular
work.

project tree A directory that contains a working copy of your work.

pristine A protected, unaltered copy of a particular revision, normally stored in a project
tree in the {arch} subdirectory. See Section 5.14

revision A snapshot of the work at a particular time, complete with a patch log describing
how it differs from previous revisions. See Section 5.1.1

whole-tree commits A commit that involves all of the files in a project tree.

95

