
ArX
16th November 2005

This do
ument is Copyright (C) 2003-2005 Walter Landry, Copyright (C) 2003 MilesBader.This work is free software; you
an redistribute it and/or modify it under the terms ofthe GNU General Publi
 Li
ense as published by the Free Software Foundation; version 2dated June, 1991.This work is distributed in the hope that it will be useful, but WITHOUT ANY WAR-RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FORA PARTICULAR PURPOSE. See the GNU General Publi
 Li
ense for more details.You should have re
eived a
opy of the GNU General Publi
 Li
ense along with this work;if not, write to the Free Software Foundation, In
., 59 Temple Pla
e, Suite 330, Boston, MA02111-1307 USA

1

CreditsArX has been
ooperatively developed, and has
ontributions from many people and or-ganizations. A hopefully
omplete list: Pau Aliagas, David Allou
he, Tim Barbour, StigBrautaset, Jon Buller, Junio C Hamano, Environment Canada - Meteorologi
al Servi
e ofCanada, Mike Coleman, Robert Collins, Don Dayley, Alexander Deruwe, Federi
o Di Gre-gorio, Ni
holas Dille, Paul Eggert, John Ellson, Robin Farine, Lele Gaifax, Karel Gardas,Johnathan Geisler, Jonathan Geisler, Chris Gray, Jan Harkes, Isamu Hasegawa, Joey Hess,Mikael Hillerstrom, David Kantowitz, Walter Landry, Tom Lord, Andrew Morton, FrankMurphy, Steve Murphy, Gergely Nagy, Matthias Neera
her, Daniele Ni
olodi, S
ott Parish,Chris Paulson-Ellis, Ulri
h Pfeifer, Mar
 Re
ht, The Regents of the University of California,Kevin Smith, Ri
hard Stallman, Bru
e Stephens, Robert W. Anderson, Bryan W. Headley,Martin Waitz, Colin Walters.In addition, ArX makes use of some wonderful tools from the FSF (www.gnu.org) andfour ex
ellent libraries: Boost (www.boost.org), Loki (http://sour
eforge.net/proje
ts/loki-lib/), Brian Gladman's SHA implementation, and Graydon Hoare's xdelta implementation.The
ode in those libraries requires the following a
knowledgements:/* Copyright (
) 2000-2002* CrystalClear Software, In
.** Permission to use,
opy, modify, distribute and sell this software* and its do
umentation for any purpose is hereby granted without fee,* provided that the above
opyright noti
e appear in all
opies and* that both that
opyright noti
e and this permission noti
e appear* in supporting do
umentation. CrystalClear Software makes no* representations about the suitability of this software for any* purpose. It is provided "as is" without express or implied warranty. */* Copyright (
) 1998-2002* Dr John Maddo
k** Permission to use,
opy, modify, distribute and sell this software* and its do
umentation for any purpose is hereby granted without fee,* provided that the above
opyright noti
e appear in all
opies and* that both that
opyright noti
e and this permission noti
e appear* in supporting do
umentation. Dr John Maddo
k makes no representations* about the suitability of this software for any purpose.* It is provided "as is" without express or implied warranty.2

// The Loki Library// Copyright (
) 2001 by Andrei Alexandres
u// This
ode a

ompanies the book:// Alexandres
u, Andrei. "Modern C++ Design: Generi
 Programming and Design// Patterns Applied". Copyright (
) 2001. Addison-Wesley.// Permission to use,
opy, modify, distribute and sell this software for any// purpose is hereby granted without fee, provided that the above
opyright// noti
e appear in all
opies and that both that
opyright noti
e and this// permission noti
e appear in supporting do
umentation.// The author or Addison-Wesley Longman make no representations about the// suitability of this software for any purpose. It is provided "as is"// without express or implied warranty.

3

Contents
1 Introdu
tion 72 Installation and Versioning 92.1 Building ArX . 92.2 Versioning . 103 Setup 113.1 IDs . 113.2 Ar
hives . 114 Basi
 Revision Control 134.1 The First Revision . 134.2 Further Revisions . 144.3 More
ompli
ated
hanges . 144.4 Reviewing your work . 154.5 Working with an existing proje
t . 155 Advan
ed ArX Con
epts 175.1 Ar
hives . 175.1.1 Bran
hes and Revisions . 175.1.2 Ca
hed Revisions . 185.1.3 Remote Ar
hives . 185.1.3.1 HTTP with webDAV . 195.1.3.2 HTTP with Expli
it lists 195.1.3.3 A

essing the Ar
hives . 195.1.4 Mirrors . 205.1.4.1 Publishing a lo
al ar
hive 215.1.4.2 Making a lo
al
opy of a remote ar
hive 225.2 Bran
hing and Merging . 235.2.1 Initial Bran
hing . 235.2.2 Merge . 245.2.3 Replay . 255.2.4 Merging Ba
k . 275.2.5 Bug Fix Bran
hes . 285.3 Remote Cooperation and Publishing Your Work 284

5.3.1 Tags . 285.3.1.1 Release Markers . 285.3.1.2 Colle
tions . 295.3.1.3 Floating Tags . 305.3.1.4 Limitations . 305.3.2 export . 305.3.3 Applying pat
hes dire
tly . 315.3.4 Multiple
ommiters (a la CVS) . 325.4 Reverting development . 325.4.1 Before you
ommit . 325.4.2 After you
ommit . 335.4.2.1 Non-destru
tive revert . 335.4.2.2 Destru
tive revert . 345.5 Properties . 355.5.1 Preserving File Permissions . 355.5.2 User De�ned Properties . 365.5.3 End-of-Line Conversion . 365.6 Hooks . 365.7 Pat
h Logs and Changelogs . 375.8 Making Pat
hes Bigger or Smaller . 385.8.1 Sele
tive
ommits . 385.8.2 Breaking up pat
hes . 395.8.3 Agglomerating pat
hes . 395.9 Working with Large Trees . 395.9.1 arx edit . 395.9.2 link-tree . 405.9.3 Timestamps . 405.10 Cryptographi
 Che
ksums and Signatures 415.10.1 Theory . 415.10.2 Pra
ti
e . 425.11 Internationalization . 435.12 In
luding one proje
t within another . 435.13 Proje
t Tree Inventories . 435.13.1 Inventory Ids . 435.13.2 Inventory Types . 445.14 Pristine Trees . 455.15 Additional Tools . 456 Beyond this manual 46A Pat
h Algorithm 47B Con�i
ts 49
5

C Sample Merge S
ripts 52C.1 Three way merges . 52C.1.1 Meld . 52C.1.2 Xxdi� . 52C.1.3 kdi�3 . 52C.1.4 gvimdi� . 52C.1.5 X/Ema
s . 53C.2 Pat
h merges . 53

6

Chapter 1Introdu
tionArX is a version
ontrol system that enables you to do many things that seem di�
ultor painful with
urrent systems. Suppose you are
reating something, be it a program,a do
ument, or even graphi
s. As you make modi�
ations to the work, you
an save thedi�erent revisions into an ar
hive as you go along. Then, if you de
ide that something youdeleted is still useful, you
an get that old work ba
k. Sometimes it is just the di�eren
ebetween two revisions that is interesting. ArX also makes it easy to get just those di�eren
es.As the work be
omes larger and more
ompli
ated, it spreads into di�erent �les. Some-times you make a number of related
hanges to a number of �les, and you want all of these
hanges to be
ommitted at the same time. In parti
ular, some of these
hanges may dependupon ea
h other. ArX supports whole-tree
ommits, whi
h ensure that all of those
hangesare grouped together.As the proje
t matures, the logi
al stru
ture
hanges, so you move �les and dire
toriesaround. You �nd it
onvenient to use symlinks and permissions. ArX stores all of thatinformation, allowing you to get ba
k exa
tly what you put in. Sometimes, you start workingon a
hange that you may not be
ompletely sure whether it will end up in the �nal
reation.ArX makes it easy to
reate a bran
h of your
reation that lives in parallel with the mainline of development. On
e the work on that bran
h is done, ArX makes it easy to integratethose
hanges ba
k into the main line of development. Or you
an just
ontinue to work onthe bran
h and
ompletely forget about the �main� line.Finally, you want to release your work upon the world. ArX supports ways to pa
kageup your
reation into simple tarballs. People admire your work, and want to help out. Thisis where ArX's strengths really shine. You
an publish your ar
hive so that other people
an wat
h your development, trying out new elements as you
reate them. You
an use avariety of ordinary servers, in
luding an ordinary web server, a web server with webDAV,an ftp server, or an sftp server for se
ure a

ess. You
an also digitally sign the ar
hive toredu
e the risk of someone
ompromising the
ode and inserted hidden bugs.As time goes on, some of the testers be
ome developers, sending in small pat
hes toimprove this or that part. They
an work in isolation,
reating pat
hes that they send toyou. You
ontinue to work, and ArX makes it easy for independent developers to keep theirtree up to date. They, too,
an publish an ar
hive, and ArX makes it easy to integratepat
hes from them. You
an either take everything that they do, or you
an sele
tivelyapply pat
hes from among the ones they o�er. As before, you
an easily
reate bran
hes to7

try out pat
hes from many di�erent sour
es, and only integrate those that pan out.In time, you may tire of your
reation, and some of your
ontributors may be
ome moreproli�
 than yourself. ArX makes it easy for anyone to mirror your ar
hive, and anyone
an
reate their own bran
hes. Anyone
an be
ome a new maintainer. A new person, or anew group, may
ome to hold sway over the future of the
reation. Their own ar
hives willbe
ome the
enters of eagerly awaited pat
hes, while your own fades into history.

8

Chapter 2Installation and Versioning
2.1 Building ArXTo build the
ode you will need a de
ent C++
ompiler. A re
ent version of g

 (>=3.2)is re
ommended. The
ode uses auto
onf, so a minimal shell is needed. In addition, youmust have Python >=2 (just used for building) and a working gnome-vfs2 install. Finally,ArX uses GNU di�, pat
h and tar. On Windows, you
an get these with Cygwin. SeeINSTALL.CYGWIN for more details. On Ma
 OS X, you
an use either pkgsr
1 or Fink2.Detailed installation instru
tions
an be found in INSTALL.GENERIC.On
e you have it installed and in your path, you
an invoke it$ arxand it will give some outputInvoke a sub-
ommand of arx.usage: arx
ommand [options℄ [arguments℄All
ommands take the following options:-h -H --help print a help message spe
ifi
 to that
ommand--silent no output--quiet only output errors--default-output default output--report slightly verbose output--verbose maximal output-- mark the end of optionsThe -- option is useful for expli
itly ending the list of options. Thisis useful if a filename, for example, might be mistaken for an option.In addition, you
an spe
ify the following options instead of a
ommand.-V --version print version info-h --help display this help-H --help-
ommands display a list of sub
ommands1http://www.netbsd.org/Do
umentation/software/pa
kages.html2http://�nk.sour
eforge.net 9

In general, to invoke an ArX
ommand, you type arx followed by the
ommand, then followedby any options, and �nally any arguments to the
ommand.2.2 VersioningYou
an �nd out what version of ArX you are running with the -V option:$ arx -VArX 2.2.2Built 00:25:42 Apr 28 2005 with gpg supportCopyright 2001-2005 by various
ontributors. See CREDITS for details.This is free software; see the sour
e for
opying
onditions.There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR APARTICULAR PURPOSE.Report bugs to <arx-users�nongnu.org>.The version has three parts, a major, minor, and revision number. Two versions that di�eronly in revision number (e.g. 2.0.12 and 2.0.15) should be mostly
ompatible. Commandsmay be added, modi�ed, or removed, but the disk format will be the same. A minor version
hange means that the format for anything ex
ept an ar
hive may have
hanged. For exam-ple, you may have to delete and re-get a proje
t tree. A major version
hange means thatthe ar
hive format has
hanged, perhaps requiring you to
onvert ar
hives.

10

Chapter 3Setup
3.1 IDsThe �rst thing you should do is
ome up with an ID for yourself. ArX uses it to identifywho
ommitted a
hange to an ar
hive, and who is holding lo
ks on an ar
hive. You
an useyour name or a pseudonym, as in$ arx param id �Don Quixote de la Man
ha�The argument is quoted be
ause there are spa
es in the name. To see what your ID is, you
an use param id without arguments$ arx param idDon Quixote de la Man
ha3.2 Ar
hivesNow you need a pla
e to store all of the revisions you are going to be making. This is
alledan ar
hive, and you
reate one with the make-ar
hive
ommand. You need to know twothings before you
reate the ar
hive: what to
all it and where it will be. You
an namean ar
hive whatever you like, as long as it does not have a slash �/� or
olon �:� inside it.The usual
hoi
e follows a syntax that looks like an email address followed by a furtherdelineation. For exampled
oyote�example.org--ar
hiveThe advantage of using an email address is that it is already unique, so you won't have
lashes with another person. You will probably �nd yourself
reating di�erent ar
hives fordi�erent purposes, so it is wise to put some sort of quali�er at the end of the name of thear
hive. For example, if you want to have an ar
hive for your work at Yoyodyne In
. andanother for your spare time, you might
hoose ar
hive names su
h asd
oyote�example.org--yoyodyned
oyote�example.org--freetime 11

Now that you have a name for your ar
hive, you need a pla
e to put it. Any spare dire
torywith a fair amount of spa
e will do. If you have de
ided to put the ar
hive in the dire
toryar
hive, then you make the ar
hive with make-ar
hive$ arx make-ar
hive d
oyote�example.org--ar
hive ar
hiveNote that you should never have to look inside that ar
hive dire
tory.The last thing that you should do is set up a default ar
hive. You just use the symboli
name of the ar
hive$ arx param default-ar
hive d
oyote�foobar.org--ar
hiveYou are now set up for basi
 revision
ontrol.

12

Chapter 4Basi
 Revision Control
4.1 The First RevisionArX works on entire proje
t trees, so everything has to be stored within a dire
tory. Thisdi�ers from some simpler revision
ontrol systems su
h as RCS whi
h
an operate on just one�le. So we need to
reate a dire
tory to store our �les. We will illustrate with the simplestshell s
ript, Hello world. We
reate the dire
tory$ mkdir helloand then
reate the program$
d hello$ e
ho "e
ho Hello, World" > HelloNow we are going to store this masterpie
e in ArX. We �rst have to initialize the tree, lettingArX know that we are
reating a new proje
t. We will
all the proje
t "hello".$ arx init helloThis
reates an _arx sub-dire
tory in the
urrent dire
tory. You should never need to lookat things in the _arx dire
tory. It also automati
ally re
ursively adds all of the paths (�lesand dire
tories) in the dire
tory to the list of paths that will get stored in the ar
hive.You
an now store the �rst revision in your ar
hive by running$ arx
ommit -s �First revision�If later you de
ide that you want to get ba
k this initial revision, you use get$ arx get hello,0This is the initial revision, so it has �,0� appended to the end of the revision. Later revisionswill have �,1�, �,2�, et
. appended. 13

4.2 Further RevisionsNow suppose that you have made some modi�
ations to your proje
t. Commiting the
hangesis just$ arx
ommit -s �Fixed foo to do bar instead of baz�You
an
ontinue this simple s
heme ad in�nitum as long as you don't need to add, delete,or move �les.4.3 More
ompli
ated
hangesSooner rather than later, you will want to add more �les. ArX requires you to expli
itlynotify ArX every time you add a �le. You do this with the add
ommand. For example, ifyou
reated a �le named �Goodbye�, you
an add it by typing$ arx add GoodbyeThis works on dire
tories as well, although not re
ursively by default. If you do not expli
itlyadd a �le, then ArX will not store it or any modi�
ations into the ar
hive. If you do notadd a dire
tory, any
hanges that o

ur in that dire
tory will not be re
orded.Similarly, if you later de
ide that you don't need �Goodbye� anymore, you
an delete itwith the
ommand$ arx rm Goodbyearx rm supports most of the same semanti
s as rm(1), so you
an re
ursively and intera
-tively delete �les and dire
tories. Finally, you
an move �les$ arx mv Goodbye Goodbye.sharx mv supports most of the semanti
s of plain old mv(1), so you
an move a number of �lesinto a subdire
tory$ arx mv foo bar baz bat/If you forget to use the ArX fun
tions to delete and move �les and dire
tories, ArX willnot let you
ommit. You
an use the tree-lint to see what kinds of problems might ariseduring
ommit.$ arx tree-lintSome of the things that tree-lint
omplains about are only warnings that will not stop a
ommit. For example, if you forget to add a �le. In general, if you have been doing a lot ofmodi�
ations to the tree, it is wise to run tree-lint before
ommitting.If you have made so many
hanges over su
h a long time that you have forgotten exa
tlywhat you have done, then$ arx diffwill tell you what paths have
hanged sin
e the last time you
ommitted.14

4.4 Reviewing your workYou
an get a terse listing of the revisions you have
ommitted witharx logAlternately,arx log --formattedwill give a more detailed pi
ture. These
ommands look in the proje
t tree for the informa-tion. If you are not in the proje
t tree, thenarx log --remotewill instead query the ar
hive. Given this listing of revisions, you
an get a parti
ular revision(e.g. revision 12) witharx get hello,12This puts revision 12 into the dire
tory hello.12. Note that this is di�erent from CVS,be
ause you didn't have to expli
itly tag a revision in order to get a parti
ular snapshot ofthe tree. Every revision is akin to a snapshot.4.5 Working with an existing proje
tSuppose your trusty sideki
k San
ho Panza has set up an ar
hive atftp://ftp.example.org/~spanza/ar
hive/You
an register that ar
hive with the ar
hives
ommandarx ar
hives -a ftp://ftp.example.org/~spanza/ar
hive/ArX will retrieve the name of the ar
hive from the ar
hive itself. If San
ho Panza named thear
hive spanza�example.org when he
reated it, then running ar
hives without argumentsshould give you output like$ arx ar
hivesspanza�example.orgftp://ftp.example.org/~spanza/ar
hiveHowever, you don't need to expli
itly register the ar
hive. ArX will do it for you wheneveryou a

ess the ar
hive (e.g. when using browse or get). So to see what is there, you
anrun arx browse ftp://ftp.example.org/~spanza/ar
hive/15

The trailing slash �/� is important. ArX assumes that everything past the last slash is abran
h name, so without the trailing slash ArX would be looking for the ar
hive bran
h inan ar
hive lo
ated at ftp://ftp.example.org/~spanza/.Now that the ar
hive is registered, you
an use the ar
hive name instead of URL's. Forexample, to get the windmill proje
t from that ar
hive, you
an usearx get spanza�example.org/windmill windmillBut using the full URL will always workarx get ftp://ftp.example.org/~spanza/ar
hive/windmill windmillOn
e you have this proje
t, you
an keep up to date with any
hanges to the proje
t witharx merge --dir windmillThe merge
ommand is analogous to the update
ommand in CVS, although merge is mu
hmore powerful. You
an set up ArX to pop up a graphi
al merge tool in
ase of
on�i
ts.See Appendix C for details.

16

Chapter 5Advan
ed ArX Con
eptsThe pre
eding
hapters gave a basi
 introdu
tion to working with ArX. However, some ofthe things that make ArX so useful ne
essarily be
ome somewhat spe
ialized. So it has beenbroken down into separate se
tions here. Ea
h se
tion should be fairly independent.5.1 Ar
hivesArX uses ar
hives to store all of the revisions of a proje
t. As explained earlier, ar
hives havea symboli
 name (like d
oyote�yoyodyne), and an address (like /home/d
oyote/yoyodyne).You
an have multiple ar
hives on the same ma
hine or multiple ma
hines. make-ar
hive
reates ar
hives and registers them for you. ar
hives lists, registers and unregisters ar
hives.If you need to move an ar
hive, you only need to physi
ally move or
opy the ar
hive dire
toryto its new lo
ation and re-register the ar
hive.Most of the time, you do not have to register ar
hives with ar
hives. You
an browsear
hives and get revisions by spe
ifying the
omplete URI, and that will register the ar
hivefor you.5.1.1 Bran
hes and RevisionsWithin an ar
hive are di�erent bran
hes. Bran
hes are a basi
 way of splitting up work sothat people are free to work out improvements without dire
tly upsetting the main devel-opment bran
h. Bran
hes have a hierar
hi
al stru
ture, and
an be any number of levelsdeep. For example, g

 developers might set up a bran
h
alled g

. Someone else mightbe working on a new parser, so they make a bran
h
alled g

.new-parser. During the
ourse of their work, the developers working on the new parser might make a bran
h for im-proving
ompilation speed
alled g

.new-parser.speed. They might make another bran
hfor handling java and
all it g

.new-parser.java. The bran
h names are purely for hu-man
onsumption, and do not enfor
e any real relation between bran
hes. For example,g

.new-parser.java might be
ompletely unrelated to g

 or the new parser at all.Within ea
h bran
h are revisions. These are numbered starting from zero. A revision isa snapshot of the state of a proje
t. For example, revision 66 might be the proje
t just aftersome speed improvements have been implemented. Revision 75 might be the proje
t on
e17

all of the bugs in the speed improvements are worked out. Revision 76 might be the proje
ton
e the do
s are updated to re�e
t the new speedups. And so on. A revision is spe
i�edwith a leading
omma �,� to distinguish it from a bran
h. So revision 66 of g

.new-parserwould be g

.new-parser,66.To summarize, the
omplete syntax for spe
ifying a proje
t isar
hive/bran
h.subbran
h,revisionIf you have de�ned your default ar
hive, you
an omit the ar
hive. There are a number of
ases where you may want to spe
ify just an ar
hive. If it is possible for the ar
hive to be
onfused with a bran
h or revision, you must follow the ar
hive name with a slash �/�. Forexample, to browse the
ontents of ar
hive spanza�example.orgarx browse spanza�example.org/Otherwise, ArX will think that you are trying to browse the spanza�example.org bran
hin your default ar
hive.5.1.2 Ca
hed RevisionsArx does not store the full text of all revisions in the ar
hive. Instead, it
urrently stores the�rst revision and subsequent pat
hes. This
an be quite slow. For example, if you have 1000revisions, ea
h time you get the latest revision, ArX has to get and apply 999 pat
hes to getto the most re
ent revision. For that reason, you
an
a
he revisions in the ar
hive. Running�ar
hive-
a
he --add� will
reate a pristine tree of the latest revision and store it in thear
hive. This has to do all of the pat
hing, but subsequent get's won't have to. This usesup additional spa
e in the ar
hive, be
ause it is storing a tarball of an entire proje
t treeand all of the pat
hes. If you need to re
laim the spa
e, �ar
hive-
a
he --delete� willremove it. Finally, �ar
hive-
a
he� without any options will tell you whi
h revisions havebeen
a
hed.5.1.3 Remote Ar
hivesRemote ar
hives are simply ar
hives that are not a

essible through the lo
al �lesystem. Inpra
ti
e, remote ar
hives are the prin
ipal method for distributing software through ArX.For example, remote ar
hives
an be pushed to (e.g. mirroring a lo
al ar
hive to a webserver) or pulled from (e.g. to download software from that web server). ArX uses thegnome-vfs libraries to a

ess the remote ar
hives over standard networking proto
ols. Thatmeans that if gnome-vfs
an see an ar
hive, then ArX
an as well. In parti
ular, ArX
ana

ess remote ar
hives using http with webDAV, ftp, ssh, and sftp1. In addition, if you
annot install webDAV, there is an option to use http with expli
it lists.The �rst thing that you have to do is set up the (s)ftp, ssh, or http server on the remotema
hine. ArX does NOT have to be installed.1For sftp to work, you must have auto-login enabled.18

5.1.3.1 HTTP with webDAVThere are two ways that http a

ess
an work. ArX needs to list dire
tories, and plain httpdoes not provide that. HTTP with webDAV is the re
ommended and most reliable way.To
on�gure webDAV with apa
he, this usually involves installing the mod_dav module.This will work with Apa
he 1.3 or later. It does not require Apa
he 2. Then you have toadd something like the following to the
onf �le for apa
he:<Dire
tory /home/*/publi
_html>DAV OnAllowOverride FileInfo AuthConfig LimitOptions MultiViews Indexes SymLinksIfOwnerMat
h In
ludesNoExe
<Limit GET POST OPTIONS PROPFIND>Order allow,denyAllow from all</Limit><Limit PUT DELETE PATCH PROPPATCH MKCOL COPY MOVE LOCK UNLOCK>Order deny,allowDeny from all</Limit></Dire
tory>You might have to
hange the �rst line of that to make it point to where your ar
hives are.5.1.3.2 HTTP with Expli
it listsIf you are unable to install webdav support on your server, you
an also generate .listing�les that
ontain a listing of a dire
tory. You do this with update-listing. For example,on
e you have
reated an ar
hive, you
an tell ArX to keep the .listing �les to the ar
hiveup-to-date with a
ommand likearx update-listing -a sftp://dquixote�example.org/publi
_html/ar
hiveFor long laten
y links, this
an signi�
antly in
rease the time to
ommit and mirror. If youno longer need to keep the .listing �les up-to-date, thenarx update-listing -d sftp://dquixote�example.org/publi
_html/ar
hivewill stop ArX from updating them.5.1.3.3 A

essing the Ar
hivesTo a

ess ar
hives, just use the ordinary URI notation. Spe
i�
ally19

ftp://[user�℄host/dirsftp://[user�℄host/dirssh://[user�℄host/dirhttp://[user�℄host[:port℄/dirhttps://[user�℄host[:port℄/dirdav://[user�℄host[:port℄/dir2ArX saves the lo
ations in your .arx dire
tory. For ftp and http, passwords are stilltransferred in plain text. So se
urely writing to remote ar
hives requires you to use sftp,ssh, or https. Note that the same ar
hive
an be registered using di�erent proto
ols.For example, suppose that you have a website on the ma
hine example.org rooted at/home/d
oyote/publi
_html/ar
hive. Through a web browser, it appears at http://example.org/~d
oyote/ar
hive.Sin
e you
an log in to the sftp server, you
an register the ar
hive asarx ar
hives --add sftp://d
oyote�example.org//home/d
oyote/publi
_html/ar
hivewhile someone who wanted just read a

ess
ould register it asarx ar
hives --add http://example.org/~d
oyote/ar
hiveNote that ArX automati
ally gets the name of the ar
hive from the ar
hive itself. In fa
t,in general you do not have to register ar
hives at all, sin
e ArX will automati
ally registerthem for you. For example, to browse the previous ar
hive, you
an typearx browse http://example.org/~d
oyote/ar
hive/The trailing slash �/� is required so that ArX doesn't look for an ar
hive athttp://example.org/~d
oyote/with a bran
h named ar
hive.5.1.4 MirrorsSuppose that you do all of your work on a laptop, but you also have a

ess to a web server.To share your work with the world, you want to
opy your laptop ar
hive to the web server.Alternately, suppose that someone else has published an ar
hive. You would like to havea lo
al
opy on your laptop for when you don't have a

ess to the network. You
an usemirrors to manage
opies of ar
hives.Mirrors are not true
opies, in that there are
ertain restri
tions when using them. Inparti
ular, you
an not
ommit new revisions to an ar
hive. This prevent the
ase whereone person
ommits a revision to the master ar
hive, and another person
ommits a revisionwith the same name to the mirror. Having two di�erent revisions with the same name butdi�erent
ontents will
ause
onfusion, so ArX prevents it.2This is only to a

ess webdav repositories using gnome-vfs 2.10 or greater. Previous versions of gnome-vfsjust use the http:// notation. 20

5.1.4.1 Publishing a lo
al ar
hiveAs a
on
rete example, suppose you have an ar
hive lo
ally and a remote ma
hine that you
an a

ess through sftp whi
h also serves as a web server. Then the lo
al ar
hive namedd
oyote�example.org-ar
hive might be atfile:///home/d
oyote/ar
hive/The remote ar
hive
ould be atsftp://d
oyote�example.org//home/d
oyote/publi
_html/ar
hive/and it
an also be a

essed by the web athttp://example.org/~d
oyote/ar
hive/To
reate the remote mirror, it isarx make-ar
hive --mirror d
oyote�example-ar
hive \sftp://d
oyote�example.org//home/d
oyote/publi
_html/ar
hiveSin
e the remote ar
hive will also be available over plain http, you need to tell ArX to updatethe .listing �lesarx update-listing -a sftp://d
oyote�example.org//home/d
oyote/publi
_html/ar
hiveNow if you look at the ar
hive registration, you will see$ arx ar
hives d
oyote�example.org-ar
hived
oyote�example.org-ar
hivefile:///home/d
oyote/ar
hivesftp://d
oyote�example.org//home/d
oyote/publi
_html/ar
hiveSo the single ar
hive d
oyote�example.org�ar
hive has two lo
ations asso
iated with it. The�rst listed lo
ation will always be the one used for get,
ommit, et
., unless you spe
i�
allyuse the other uri. For example,arx get d
oyote�example.org-ar
hive/foowill use the lo
al (�le:///) ar
hive to
omplete the get. If you want to test the mirror, you
an use the uri instead of the namearx get sftp://d
oyote�example.org//home/d
oyote/publi
_html/ar
hive/fooand ArX will get the foo proje
t from the remote mirror.Finally, to populate the mirror, you use the mirror
ommand and spe
ify the sour
e anddestination 21

arx mirror d
oyote�example-ar
hive/ \file:///home/d
oyote/ar
hive \sftp://d
oyote�example.org//home/d
oyote/publi
_html/ar
hiveThis
an get quite tedious to type, so you
an shorten the uri's as long as they are unique.That isarx mirror d
oyote�example-ar
hive/ file sftpwill do the same thing, as will evenarx mirror d
oyote�example-ar
hive/ f sBy default, ArX will mirror everything from one ar
hive to the other. You
an restri
t whatwill be mirrored by adding it to the ar
hive name. So if you have the proje
ts foo and bar,arx mirror d
oyote�example-ar
hive/foo file sftpwill only mirror proje
t foo.Finally, for other people to a

ess it, they will register the ar
hive with the http uriarx ar
hives -a http://example.org/~d
oyote/ar
hiveYou
an also register this lo
ation, in whi
h
ase the output of arx ar
hives would bed
oyote�example--proje
tsfile:///home/d
oyote/ar
hivesftp://d
oyote�example.org//home/d
oyote/publi
_html/ar
hivehttp://example.org/~d
oyote/ar
hiveThis might be useful to
he
k that the .listing �les have been updated
orre
tly.5.1.4.2 Making a lo
al
opy of a remote ar
hiveAnother
ase where mirroring might
ome in handy is if there is a remote mirror that youwant to make a lo
al
opy of. Working from the above example, suppose you are San
hoPanza, and you want to have a lo
al
opy of Don Quixote's ar
hive. You might do thisso that you don't have to wait on the network, or you might want to work where you aredis
onne
ted from the network entirely. So you would start with an ar
hive registration liked
oyote�example-ar
hivehttp://example.org/~d
oyote/ar
hiveTo make a lo
al ar
hive, you might do something likearx make-ar
hive --mirror d
oyote�example.org-ar
hive \file:///home/spanza/dquixote-ar
hive22

Then populating it would bearx mirror d
oyote�example.org-ar
hive/ http fileThis will give you an ar
hive registration liked
oyote�example-ar
hivehttp://example.org/~d
oyote/ar
hivefile:///home/spanza/dquixote-ar
hiveBut this is not quite what you want. When ArX does a get, it will default to looking atthe remote ar
hive. To make ArX default to looking at the lo
al mirror, you
an use the--make-default option to ar
hivesarx ar
hives --make-default d
oyote�example--proje
ts fileOn
e again, you
an abbreviate the uri. This will put the file:/// uri �rst, so the regis-tration will be
omed
oyote�example--proje
tsfile:///home/spanza/dquixote-ar
hivehttp://example.org/~d
oyote/ar
hive5.2 Bran
hing and MergingSuppose someone (Bob) is writing a sorting program, su
h as the unix sort(1). Bob juststarted, so he has only implemented a generi
 bubble sort. That works well enough for Bob,so he is now
on
entrating on improving the option handling. Ali
e, on the other hand, likesBob's program, but needs a faster sorting algorithm. So she wants to work on improvingthe sorting algorithm while Bob works on the option handling. Eventually, either Bob willmerge Ali
e's work ba
k into the original program, or Ali
e will merge Bob's work into herversion. ArX handles this sort of situation with bran
hes and merges.5.2.1 Initial Bran
hingSo let's start again from the beginning. Bob has written a sorting program and published itas bob�foo.org/sort.bob. It
urrently has 23 revisions from bob�foo.org/sort.bob,0 tobob�foo.org/sort.bob,22., as shown in Figure 5.1.Ali
e wants to start from the most re
ent revision, 22, to implement the new sortingalgorithm. To do that, she
reates a bran
h in her own ar
hive ali
e�bar.org. She will
reatea bran
h
alled sort.bob.qui
k to denote that she is working on a qui
ksort implementation.To
reate the bran
h, she starts by typingarx get bob�foo.org/sort.bob sort_qui
k
d sort_qui
karx fork ali
e�bar.org/sort.bob.qui
k23

...

bob@foo.org/sort.bob,0

bob@foo.org/sort.bob,1

bob@foo.org/sort.bob,2

bob@foo.org/sort.bob,22Figure 5.1: Bob's original revisions
alice@bar.org/sort.bob.quick,0

alice@bar.org/sort.bob.quick,1

alice@bar.org/sort.bob.quick,2

alice@bar.org/sort.bob.quick,3

...

bob@foo.org/sort.bob,22

bob@foo.org/sort.bob,2

bob@foo.org/sort.bob,1

bob@foo.org/sort.bob,0

Figure 5.2: Ali
e's bran
hThis will
reate a dire
tory sort_qui
k with the new bran
h, but not
ommit anything tothe ar
hive. To a
tually
reate the new bran
h in the ar
hive, she just
ommitsarx
ommit -s �bran
h to implement qui
ksort�Now she
an use the usual
ommands to make su

essive revisions, giving Figure 5.2.5.2.2 MergeSo Ali
e is happily ha
king along, ripping out the bubble sort and implementing the newqui
k sort. In the meantime, Bob has not been idle. He implemented some fan
y new optionparsing with �ve new revisions, 23, 24, 25, 26 and 27. Ali
e is not entirely sure what Bobhas been up to, but she
an �nd out with missing. She typesarx missing bob�foo.org/sort.bob 24

and ArX will print out all of the pat
hes that she doesn't have yet (pat
hes 23, 24, 25, 26,and 27). She looks at those
hanges, and de
ides to in
orporate all of those
hanges into herbran
h. So she merges those
hanges inarx merge bob�foo.org/sort.bobThere are a number of ways that
hanges
an
on�i
t (see Appendix B). By default, ArXuses a three-way merge to apply the
hanges in Bob's tree to Ali
e's tree. ArX
an alsomerge by looking at the pat
hes that Bob has applied to make bob�foo.org/sort.bob,22be
ome bob�foo.org/sort.bob,27, gathering it into one big pat
h and applying it to Ali
e'ssort_qui
k tree.arx merge --algo pat
h bob�foo.org/sort.bobEither method is fairly sophisti
ated, handling a number of
ases automati
ally. For every-thing but modi�
ation of �le
ontents (i.e. renames, deletes, metadata
hanges), the twomethods are identi
al. For example, even if a �le has moved, ArX will still know whi
h �leto modify. But sometimes there are problems. Bob may have made in
ompatible
hanges toa �le that Ali
e modi�ed.The three-way merge is slightly better at avoiding
on�i
ts, so it is the default. Butwhen
on�i
ts are inevitable, the real di�eren
e between the two methods is how
on�i
tsare resolved. When there are
on�i
ts in �le
ontents, the three-way merge method will leavefour �les in the proje
t tree: The original tree �le, the sibling �le, the an
estor �le, and theoutput of di�3 when it tried to merge the three. The di�3 �le has inline
on�i
t markerssimilar to what CVS
on�i
ts give. To resolve the
on�i
t, you
an edit the di�3 output andremove the other three �les. You
an also run a GUI three-way merge tool on the three �les:tree, an
estor, and sibling. You
an even have ArX pop up a merge tool automati
ally whenit dete
ts
on�i
ts. See Appendix C for details.When there are
on�i
ts using the big
umulative pat
h method, ArX leaves three �les:the original tree �le, a modi�ed �le with as many of the hunks of the pat
h applied aspossible, and a �le with the reje
ted hunks.For any
on�i
t, ArX will print out an error message detailing what went wrong. Ali
e
an retrieve these messages with arx resolve. On
e Ali
e
leans up all of the problems,she must tell ArX that the
on�i
ts have been resolved with arx resolve. Only then willshe be able to
ommitarx
ommit -s �Merge from sort.bob,27�Her bran
h will then in
orporate Bob's improvements, giving Figure 5.3.5.2.3 ReplayThe merge
ommand looks at the di�eren
es as a large, amalgamated whole. Sometimes,it
an be advantageous to
onsider di�eren
es pat
h by pat
h. This is what replay does. IfAli
e had instead typed 25

alice@bar.org/sort.bob.quick,0

alice@bar.org/sort.bob.quick,1

alice@bar.org/sort.bob.quick,2

alice@bar.org/sort.bob.quick,3

alice@bar.org/sort.bob.quick,4

...

bob@foo.org/sort.bob,22

bob@foo.org/sort.bob,23

bob@foo.org/sort.bob,24

bob@foo.org/sort.bob,25

bob@foo.org/sort.bob,26

bob@foo.org/sort.bob,27

bob@foo.org/sort.bob,0

bob@foo.org/sort.bob,1

bob@foo.org/sort.bob,2

Figure 5.3: Ali
e's bran
h updated with Bob's improvementsarx replay bob�foo.org/sort.bobthen ArX would instead have tried to �rst apply pat
h 23 onto Ali
e's tree, then pat
h 24,then pat
h 25, et
. If, along the way, any of those pat
hes
aused a
on�i
t, ArX stops withthat pat
h and lets you �x up the tree before
ontinuing. For example, suppose pat
h 24had a
on�i
t. sort_qui
k will
ontain the result of ArX's attempt to pat
h up to pat
h24. On
e Ali
e �xed up the sort_qui
k dire
tory, she
an just repeat the same
ommandarx replay bob�foo.org/sort.boband ArX will attempt to
ontinue the update. If there are other
on�i
ts, Ali
e
an
ontinue�xing
on�i
ts and repeating the update until she rea
hes Bob's
urrent version. Assumingthat Ali
e resolved
on�i
ts the same way, this should give exa
tly the same result as Figure5.3.However, replay also o�ers the possibility of sele
tively applying pat
hes. Suppose Ali
edidn't like all of Bob's pat
hes, but only liked pat
hes 25 and 27. She
ould have in
orporatedthose
hanges, and only those
hanges, with the
ommandsarx replay --exa
t bob�foo.org/sort.bob,25arx replay --exa
t bob�foo.org/sort.bob,27This will apply pat
hes 25 and 27 to the tree. She
an also do it in one go by putting thepat
hes names in a �le and using the --list option.Unfortunately, on
e she uses sele
tive pat
hing, she
an't use merge or replay in theirgeneri
 form anymore. They will both want to in
orporate the pat
hes that she deliberately26

alice@bar.org/sort.bob.quick,7

alice@bar.org/sort.bob.quick,6

alice@bar.org/sort.bob.quick,5

alice@bar.org/sort.bob.quick,4

alice@bar.org/sort.bob.quick,3

alice@bar.org/sort.bob.quick,2

alice@bar.org/sort.bob.quick,1

alice@bar.org/sort.bob.quick,0

...

bob@foo.org/sort.bob,0

bob@foo.org/sort.bob,1

bob@foo.org/sort.bob,2

bob@foo.org/sort.bob,22

bob@foo.org/sort.bob,23

bob@foo.org/sort.bob,24

bob@foo.org/sort.bob,25

bob@foo.org/sort.bob,26

bob@foo.org/sort.bob,27

bob@foo.org/sort.bob,28

bob@foo.org/sort.bob,29

bob@foo.org/sort.bob,30Figure 5.4: Bob's bran
h star-merged with Ali
e'sskipped. ArX
urrently does not have a means of marking
ertain pat
hes as unwanted. Ifshe wants to
ontinue to get updates from Bob, she will always have to use the --exa
t or--list options.5.2.4 Merging Ba
kAli
e
an
ontinue ha
king, using merge or replay to update her bran
h with Bob's
hanges.Eventually, Bob may want to integrate Ali
e's
hanges. This is as simple asarx merge ali
e�bar.org/sort.bob.qui
kThis will in
orporate all of Ali
e's pat
hes. ArX is smart enough to know that it really onlyneeds the pat
hes after pat
h 27 from Bob, be
ause ali
e�bar.org/sort.bob.qui
k,4integrated Bob's bran
h up to pat
h 27 into Ali
e's. As usual, this pat
hing may
ause a
on�i
t. On
e that is
leaned up, a
ommit will lead to Figure 5.4.As Ali
e and Bob
ontinue improving their respe
tive bran
hes, they
an
ontinue tomerge with ea
h other with merge. 27

5.2.5 Bug Fix Bran
hesThere are other reasons for making a bran
h. If you have made a release of your soft-ware, and want to �x issues in that release without a�e
ting
urrent development, thenyou
an bran
h from that release. For example, suppose that Bob had made a release ofbob�foo.org/sort.bob,203 . Later, after Bob has merged in the support for Ali
e's workon qui
k sort, someone �nds a bug in his implementation of bubble sort (how embarrasing!).Bob
an't make the �x in the
urrent line of development, be
ause the bubble sort has beenremoved. Bob also
an't release the
urrent line of development be
ause the proje
t is notin a releaseable state. Instead, he bran
hes from the release and �xes the bug on the bran
h.Spe
i�
allyarx get bob�foo.org/sort.bob,20 fixed
d fixed(fix the bubble sort bug)arx fork bob�foo.org/sort.bob.fixedarx
ommit -s �Fixed the bubble sort�Bob
an now make a new release with bob�foo.org/sort.bob.fixed,0, and it will onlyhave the �x to the bubble sort bug.If it turns out that the bug has already been �xed in the
urrent line of development,Bob
an pull in just that
hange. For example, if there is a typo in the help s
reen that hasbeen �xed in bob�foo.org/sort.bob,30, then Bob
an apply just that pat
h witharx replay --exa
t bob�foo.org/sort.bob,30See also Se
tion 5.8.2 for how to apply pat
hes with even �ner granularity.5.3 Remote Cooperation and Publishing Your Work5.3.1 Tags5.3.1.1 Release MarkersIf you wish to distribute your work, you
an
reate and update a mirror as des
ribed inse
tion 5.1.4. Then other people
an register your ar
hive and get the latest revision usingarx get. However, people may not want to
ontinuously follow every little spelling and o�-by-one bug�x. They only want signi�
ant, well-tested improvements. You
an a

ommodatethem by using symboli
 names to mark
ertain revisions as stable. For example,
onsiderthe situation given in Figure 5.1. If Bob is happy with the state of the tree at that point,then he
an
reate a release marker witharx tag bob�foo.org/sort.bob.release bob�foo.org/sort.bob3It is usually best to use tags (Se
tion 5.3.1) to mark releases rather than using a spe
i�
 revision number.28

This
reates a revision, bob�foo.org/sort.bob.release,0, whi
h a
ts as a symboli
 namefor the last revision of bob�foo.org/sort.bob (in this
ase, that would be bob�foo.org/sort.bob,22).Bob
an run this
ommand whenever he wants to make a release. An interested user
an getthe latest release witharx get bob�foo.org/sort.bob.releaseBe
ause bob�foo.org/sort.bob.release is just a symboli
 name, you
an not fork dire
tlyfrom it. Rather, you must fork from the referen
ed revision.You
an also use tags to just give a di�erent name for a parti
ular revision. For example,suppose you had a bran
h myprodu
t, and your marketing experts wanted to name the nextversion v0.0.1. Thenarx tag myprodu
t myprodu
t.v0.0.1will
reate a revision that you
an get witharx get myprodu
t.v0.0.15.3.1.2 Colle
tionsYou
an also use tag to mark a
olle
tion of proje
ts. So if you have the dire
tory stru
turefoo ----> Contains the proje
t foo.mainfoo/bar ----> Contains the proje
t bar.mainthen you
an mark the whole
olle
tion of proje
ts witharx tag foo.
olle
tion foo.main bar.main barThat is, you �rst spe
ify the head proje
t (foo.main). For the tail proje
ts, you spe
ify theproje
t name (bar.main), and the subdire
tory that it goes into (bar). Thenarx get foo.
olle
tionwill download both foo.main and bar.main, and put bar.main into the bar subdire
toryof foo.main.You
an have as many sub-proje
ts as you wish. For large,
ompli
ated proje
ts, you
anread in a list of proje
ts from a �le. The format istag-namehead-proje
tsub-proje
t sub-dirsub-proje
t sub-dir...Then you read it in witharx tag -f FILE 29

5.3.1.3 Floating TagsWith these large,
ompli
ated proje
ts, another problem emerges. When you de�ne a tag,it will point to a parti
ular revision. In the previous se
tion, runningarx tag foo.
olle
tion foo.main bar.main barwill
reate a tag foo.
olle
tion,0 that points to the last revision of foo.main (perhapsfoo.main,12) and the last revision of bar.main (perhaps bar.main,7). If you
ontinue towork on foo.main and bar.main, then runningarx get foo.
olle
tionwill always give you foo.main,12 and bar.main,7. On the other hand, if you use a �oatingtag arx tag --float foo.head foo.main bar.main barthen foo.head will always point to the latest revisions of foo.main and bar.main. You
annow always get the latest version of the entire
olle
tion witharx get foo.headIf you just want to update a
opy of the tree, then it is justarx merge foo.head5.3.1.4 LimitationsTags will show up as ordinary bran
hes in arx browse, but they have a few restri
tions. Inparti
ular, tree-
a
he, replay, fork, file-diff, file-orig, file-undo, and get-pat
hwill not work with tags. diff does not work dire
tly with tags, but there is a --re
ursiveoption to handle
olle
tive tags. ar
hive-
a
he, get, export, missing, and merge willwork even with
olle
tive tags. So get gets all of the di�erent proje
ts, merge updates themain proje
t and subproje
ts, et
. merge also has a --re
ursive option, whi
h updates allof the subdire
tories, not just the ones listed in the tag. The --re
ursive is equivalent torunning merge in ea
h subdire
tory. So it will not update a subdire
tory to a new bran
h,while using merging with a tag
ould.5.3.2 exportYou may de
ide that you do not want to make people use ArX just to get a revision. Evenwithout other people involved, you may want to use your work in di�erent environmentsthat do not have ArX installed. export
an
reate a tree without any of the ArX
ontrol�les and, for your
onvenien
e, a tarball of this tree. For example, if the latest revision ofhello.main is pat
h 6, thenarx export --tarball hello.main hellowill
reate a tarball in the
urrent dire
tory named hello.6.tar.gz. If you desire, you
anin
lude GNU-style
hangelogs with the --
hangelog option. export will also work withtags5.3.1. 30

5.3.3 Applying pat
hes dire
tlySometimes it is useful to generate and apply pat
hes dire
tly. For example, you might �x abug in a proje
t, but have no means of publishing the ar
hive. So you want to just mail thepat
h dire
tly to the upstream author.arx diff -o diffdirwill
reate a pat
h in the diffdir dire
tory. You
an simply tar up that dire
tory and mailit. If you have made your own ar
hive with several pat
hes, you
an still bundle all of the
hanges together with diff. You just supply diff with the last upstream revision. Forexample, given the situation in Figure 5.2, Ali
e
an
reate a pat
h of all of the work shehas done witharx diff -o diffdir --revision bob�foo.org/sort.bob,22Alternately, you may wish to give the pat
hes ba
k pie
emeal, so that the upstream author
an take only what they want. You
an get a spe
i�
 pat
h with get-pat
h. So again withthe example in Figure 5.2, Ali
e
an get all of the indiviual pat
hes witharx get-pat
h ali
e�bar.org/sort.bob.qui
k,0 ali
e.0arx get-pat
h ali
e�bar.org/sort.bob.qui
k,1 ali
e.1arx get-pat
h ali
e�bar.org/sort.bob.qui
k,2 ali
e.2arx get-pat
h ali
e�bar.org/sort.bob.qui
k,3 ali
e.3This will put the pat
hes into the dire
tories ali
e.0, ali
e.1, ali
e.2, and ali
e.3.If you want to put together some, but not all, of the pat
hes, you
an
reate a newproje
t tree with the upstream author's latest version. Then you
an apply the spe
i�
pat
hes with replay and diff will produ
e a pat
h that en
ompasses all of the
hanges.With the Ali
e/Bob examplearx get bob�foo.org/sort.bob,22 sort
d sortarx replay --exa
t ali
e�bar.org/sort.bob.qui
k,1arx replay --exa
t ali
e�bar.org/sort.bob.qui
k,3arx diff -o pat
h_1_3This will put a pat
h in the dire
tory pat
h_1_3 whi
h agglomerates the pat
hes ali
e�bar.org/sort.bob.qui
k,1and ali
e�bar.org/sort.bob.qui
k,1.On the re
eiving end, if the original author has a proje
t tree in dire
tory foo and thepat
h unpa
ked into the dire
tory diffdir, thenarx dopat
h diffdir foowill apply the pat
h. 31

5.3.4 Multiple
ommiters (a la CVS)If you have a parti
ularly large, a
tive proje
t, you may have many di�erent people updatingvarious parts
on
urrently. You want to allow the main development bran
h to be updatedby multiple people. This is the usual style of development with large proje
ts using CVS.There are a few ways to do this in ArX.The �rst is to just make the ar
hive dire
tly writeable by all of the developers. If youare all in the same pla
e, you might do this with NFS. However, you do have to be
arefulwith permissions and umask. Otherwise, one developer
ommitting
hanges may make itimpossible for other developers to
ommit.If you are in separate pla
es, you
an give all of the developers a

ounts to a shared�lesystem, on
e again being
areful about permissions and umask. If permissions and umaskproblems are insurmountable, or you do not wish to make new a

ounts for every personwho is vaguely interested in the proje
t, then you
an make a single a

ount that all of thedevelopers
an use to update the ar
hive with sftp. That means making a new a

ount forea
h proje
t. It also makes it more di�
ult to audit the a
tivity in the sour
e tree, sin
ethere is only one user-id asso
iated with all of the
hanges.One solution is to designate a person as an integrator. Developers bran
h o� of theintegrator's main line of development. When the developer is ready, they send a mergerequest to the integrator. The integrator applies the
hange to a test tree, runs any tests,and
ommits. This solution is ni
e in that it does not require giving out a

ounts to anyone.However, with a busy proje
t, the integrator
an get overwhelmed.Fortunately, this pro
ess
an be automated with a pat
h queue manager (PQM). A ni
ePQM is bundled with ArX in the tools/pqm dire
tory. The idea is to have a spe
ial PQMa

ount that manages the main line of development. Then developers bran
h o� of thismain line of development. When the developer is ready, they send a merge request to thePQM a

ount (e.g. through a signed email). The PQM a

ount attempts the merge, and,if su

essful,
ommits the
hange. If the merge fails be
ause of
on�i
ts, then nothing is
ommitted. More do
umentation
an be found in tools/pqm.5.4 Reverting developmentSometimes, you want to undo some of the
hanges that you have made.5.4.1 Before you
ommitIf you haven't
ommitted the
hange to the ar
hive and you only want to revert one �le, you
an use file-undo. That is, to undo the
hanges made to �le foo, you would typearx file-undo fooHowever, file-undo will not work properly if you deleted the �le with �arx rm� or moved itwith �arx mv�. You
an also de
ide to undo a �le ba
k to a parti
ular revision by spe
ifyingthat revisionarx file-undo foo hello.main.1.0,1132

Using a revision other than the most re
ent may require ArX to get that old revision, whi
h
an be time
onsuming. If this is a problem, you
an add that revision to your pristine trees.If you want to undo the
hanges made to a number of �les, or you used �arx rm� or�arx mv� on a �le you want to undo, then you have to use undo with those paths as extraarguments. That is, if you want to undo the �les foo and bar plus everything in the dire
torybat, you
an use the
ommandarx undo foo bar bat/If the
hanges in the dire
tory bat/ depend on
hanges elsewhere, then ArX will let youknow what you need to in
lude. If you want to undo everything that has been done sin
ethe last
ommit, just use undo without any arguments.file-undo will store a
opy of the old �le in ��le-name, so you
an get ba
k your
hangesby
opying that �le ba
k. undo will store the
hanges in a dire
tory �undo-N, with N beingthe smallest number not already taken. To get the
hanges ba
k, you
an use redo. If youdon't give redo any arguments, redo will just use the largest numbered �undo-N dire
tory.Of
ourse, if you de
ide that you really don't need the
hanges, you
an simply delete the��le-name �les and �undo-N dire
tories. ArX will never delete them itself.In summary, file-undo is ni
e for
hanges to a single �le, be
ause ArX keeps a
omplete
opy of the modi�ed �le around. undo only keeps a
opy of the di�eren
es between theoriginal �le and the modi�ed �le. file-undo also works for any revision, while undo onlyworks for the
urrent revision. However, there are times when file-undo will not work,while undo always works.5.4.2 After you
ommitIf you have already
ommitted the
hanges to an ar
hive, then there are two ways of revertingthose
hanges: Non-destru
tive and Destru
tive.5.4.2.1 Non-destru
tive revertIf you de
ide that you need to revert
hanges that have already been
ommitted to anar
hive, then you need to use the --add option to history. This will make it look like a treehas the pat
hes for a parti
ular revision without a
tually applying them. So, for example,suppose you really want the most re
ent revision to look like hello.main,12, but you madesome ill-
onsidered
hanges in pat
hes 13 and 14, then you
ould runarx get hello.main,12 hello
d helloarx history --add hello.mainarx
ommit -s �Reverted pat
hes 13 and 14�That will
reate revision pat
h 15 whi
h will look exa
tly like revision pat
h 12 ex
ept forthe history. Then, if it turns out later that pat
hes 13 and 14 were not su
h a bad idea, you
an still get them. 33

This also lends itself to more
ompli
ated s
enarios, where not everything in pat
hes13 and 14 was bad. For example, suppose the
hanges to dire
tory bat/ were good, buteverything else was bad. Then you
an use the sequen
earx get hello.main,12 hello
d helloarx history --add hello.mainarx undo bat/arx
ommit -s �Removed everything in pat
h 13 and 14 ex
ept
hanges to bat�This preserves the
hanges to bat/ but not anything else.Finally, you
an use history --add just to syn
hronize development. Consider a bran
hhello.bran
h that, for whatever reason, you want to make exa
tly the same as hello.main.Perhaps all of the
hanges that were in hello.bran
h got integrated in various ways intohello.main, and you now want to re-syn
 hello.bran
h. You
an a

omplish this witharx get hello.main hello
d helloarx history --add hello.bran
harx tree-version hello.bran
harx
ommit -s �Syn
hronize with main�Most of the time, though, you would probably just abandon the old bran
h and make a newone. Otherwise, people may get
onfused by a bran
h that
hanges meaning.5.4.2.2 Destru
tive revertYou may have a

idently
ommitted a �le that is extremely large, has
orporate se
rets, isillegal to distribute, et
. In those
ases, you will want to do a destru
tive revert of your
hanges and re
laim the spa
e. ArX does not allow you to just remove a revision. That isbe
ause someone may have forked from there, and if you repla
e one revision with a di�erentone, then ArX will get very
onfused. Essentially, ArX is trying to keep you from
hanginghistory.As an example, suppose that revision foo,23 has one of these undesirable �les. You
anissue the
ommandarx delete-revision foo,23and ArX will print out a formatted version of the log and prompt you to
ontinue. If youdo so, that revision will be repla
ed with an empty revision. It will have a log just statingthat it has been reverted. To
ontinue development, fork from the previous revisionarx get foo,22 new_foo
d new_fooarx fork foo 34

and work in the new_foo dire
tory. If you didn't noti
e the problem until after revisionswere added past foo,23, you
an replay those pat
hesarx replay --exa
t --dir new_foo foo,24arx replay --exa
t --dir new_foo foo,25arx replay --exa
t --dir new_foo foo,25...If you had just used merge, you will get the deleted log message. Not the end of the world,but a minor annoyan
e.If you want to delete an entire bran
h, then delete-bran
h will remove everything,leaving no tra
es of that bran
h. For example,arx delete-bran
h foowill delete everything in the bran
h foo, in
luding any sub-bran
hes su
h as foo.bar,foo.bar.baz, et
. This is a powerful
ommand, and ArX prompts you before deleting.5.5 Properties5.5.1 Preserving File PermissionsArX allows you to assign arbitrary properties to paths. The primary appli
ation for thiswithin ArX is to version permissions. For example, if you want to make sure that the �lefoo will have its exe
utable bit set, then the
ommandarx property --set arx:user-exe
 true foowill ensure that. At present, the following properties have prede�ned meaningsarx:user-readarx:user-writearx:user-exe
arx:group-readarx:group-writearx:group-exe
arx:other-readarx:other-writearx:other-exe
If any of these properties are set to true or false, then when that path is
he
ked out (e.g.with get), the appropriate permission bit is set (assuming the �le system
an a

omodateit).
35

5.5.2 User De�ned PropertiesYou
an also de�ne your own properties. For example, you
an assign a property that tellsyou what kind of li
ense a �le is
overed by. If you typearx property --set li
ense GPL fooarx property --set li
ense BSD barthen the li
ense for �le foo is set to the GPL and the li
ense for bar is set to the BSD li
ense.Note that, while the properties
an be arbitrary, they are designed to work well when theyare small.5.5.3 End-of-Line ConversionBy default, ArX does not do any
onversion of the end-of-line markers used in �les. In thefuture, ArX may use the arx:eol-style property to do something similar to what Subversiondoes4.5.6 HooksOne approa
h to quality
ontrol is to have a modi�ed proje
t tree go through a series ofautomated tests before the modi�
ations are stored in the ar
hive. A simple example is tomake sure that the modi�ed tree will build. On
e the pat
h has gone through, you may wishto automati
ally perform various a
tions, su
h as sending mail about a pat
h to interestedparties. ArX itself uses this feature to update the arx-
hanges list.ArX supports these two needs through hooks. To use hooks, you
reate an exe
utable �lein ~/.arx/hooks. It
an be a shell, Python, or Perl s
ript, or even a full blown C, C++, Javaor Lisp appli
ation. ArX invokes the hook both just before and just after it has altered anar
hive by adding
ategories, bran
hes, versions, or revisions. This o

urs when you invoke
ommit, tag, or mirror. ArX
alls the hook with two arguments. The �rst argument iseither pre or post, indi
ating that the hook is being
alled either before or after altering thear
hive. The se
ond argument is one of make-bran
h or make-revision, indi
ating whatArX is about to do or has done. That is, the
all syntax looks like~/.arx/hooks (pre|post) make-(bran
h|revision)In addition, ArX sets the environment variables ARX_TREEROOT to the root of the proje
t tree(if appli
able), ARX_PREVIOUS_ARCHIVE, ARX_PREVIOUS_ARCHIVE_URI, ARX_PREVIOUS_BRANCH,and ARX_PREVIOUS_REVISION to the ar
hive, ar
hive uri, bran
h, and revision of the pre-vious revision, and ARX_ARCHIVE, ARX_ARCHIVE_URI, ARX_BRANCH, ARX_REVISION, and tothe ar
hive, ar
hive uri, bran
h, and revision involved. These
an be queried to
ustomizehow the hook behaves. As an example, the following shell s
ript will send email about new
ategories, bran
hes, versions, and revisions in the wlandry�u
sd.edu--arx ar
hive to thearx-
hanges list4http://svnbook.red-bean.
om/en/1.1/svn-book.html#svn-
h-7-se
t-2.3.536

#!/bin/sh# Simple mail of pat
h logpre_post=$1a
tion=$2if test $pre_post = "post" ; thenif test $ARX_ARCHIVE = "wlandry�u
sd.edu--arx" ; thenif test $ARX_ARCHIVE_URI = \"sftp://landry�superbeast.u
sd.edu//home/landry/publi
_html/ArX/wlandry" ; thenif test $a
tion = "make-bran
h" ; thenprintf "$ARX_ARCHIVE" | mail -s \"New Bran
h: $ARX_BRANCH" arx-
hanges�nongnu.orgfiif test $a
tion = "make-revision" ; thenarx log --remote --formatted --bran
h $ARX_REVISION | mail -s \"New Revision: $ARX_REVISION" arx-
hanges�nongnu.orgfifififiThe hook s
ript is exe
uted within the
urrent dire
tory. This s
ript will be exe
uted when-ever you alter any ar
hive, so a long
ompli
ated s
ript will slow these a
tions down. Wheninvoked before altering the ar
hive, ArX waits for the hook s
ript to return and aborts if itreturns non-zero. When invoked after altering the ar
hive, ArX exe
utes the hook s
ript inthe ba
kground and ignores the return
ode. Post-
ommit hooks are never guaranteed to beinvoked. A well timed interrupt
ould let the transa
tion �nish but prevent the hook fromrunning.5.7 Pat
h Logs and ChangelogsWhen
ommitting a
hange, ArX needs a log �le with a Summary: �eld. If you use the -soption to
ommit, then ArX will
reate a log �le for you that
ontains that �eld. However,you
an also
reate your own log �les with
ustom headers. There are some reserved headers(su
h as Standard-date:, Renamed-�les:, et
.) listed in the help for log, but otherwise you
an de�ne any header you like. The log �le uses an RFC-822 style format. A
olon separatesthe header and the �eld, and the �eld is terminated by a newline that is not followed by atab. The body is separated from the headers by a blank line. As an example,Summary: Frozzled the fooMail-results-to: don�example.org, san
ho�example.
om,dul
inea�example.netBug-Number: 1605The foo was blarged by the bar, so I had to frozzle the foo in order tounmome the borogoves. 37

You
an then spe
ify that log �le with the --log-file option to
ommit.ArX adds some reserved �elds and stores the log as part of the pat
h. These logs thenbe
ome part of the revision. When you make a bran
h, your logs for that new revision appearin the proje
t tree. You
an see what versions have gone into a proje
t tree with history.For ea
h of the versions that it lists, you
an �nd out whi
h pat
hes are in
luded with log.log also lets you look at spe
i�
 headers. A simple example is to look at the New-files:�eld for all of the pat
hes for the
urrent version of the treearx log --header Revision --header New-filesThe Revision header is in
luded be
ause otherwise there is no way to tell whi
h new �lesbelong to whi
h revision.You
an also do more
ompli
ated things, su
h as �nding when foo.bar.1.0,112 was
reatedand by whomarx log --header Standard-date --header Creator \--bran
h foo.bar.1.0,112You
an use the --remote option to look at logs for revisions that you don't have in a proje
ttree. For example, if you were unsure whether you wanted to get those revisions at all.5.8 Making Pat
hes Bigger or SmallerArX
urrently does not support dire
tly breaking up one pat
h into smaller pat
hes or
omposing multiple pat
hes into one big pat
h. You
an a
hieve the same e�e
t throughsome workarounds.5.8.1 Sele
tive
ommitsSuppose you are happily working on one feature, but along the way you noti
e and �x a bugin unrelated fun
tionality. You would like to separate the bug �x from the ongoing featurework. Usually, the best way to do this is with extra path arguments to
ommit. For example,if the features are in �le foo, and the bug �x is in �le bar, then �arx
ommit bar� will only
ommit the
hanges in �le bar. You
an also sele
t �les that have been added, moved, anddeleted. ArX performs thorough
he
ks to make sure that you always
ommit a valid pat
h.For example, if you were not
areful, you might
ommit a �le that is in a dire
tory that doesnot yet exist in the ar
hive. If you try to make ArX do this, then ArX will tell you whatpaths need to be added the argument list.If the separation between bug �x and feature is not so
lean, su
h as if the
hanges o

urin the same �le, then you
an use undo. You run undo on the whole dire
tory, make and
ommit the bug �x, then redo to get ba
k the work you've done. More information onundo/redo is in Se
tion 5.4.
38

5.8.2 Breaking up pat
hesSuppose that someone has
reated a humongous, all-singing, all-dan
ing pat
h that adds 12features, �xes 30 bugs , and, of
ourse, introdu
es its own. You are only interested in aparti
ular feature whi
h is lo
alized to �les foo1, foo2, foo3, et
. To get just the
hanges tothese �les, you
an do something likearx replay --exa
t bar.big-pat
hes,13arx undo -o foo_undo foo1 foo2 foo3 ...arx undoarx redo foo_undoThis gets the pat
h, applies it to your own tree, sele
tively reverts the feature you want,reverts everything else, and then reapplies the desired feature.5.8.3 Agglomerating pat
hesSuppose you have a proje
t foo.main, and you want to make a pat
h that in
ludes pat
hes122, 133, and 156 all as one big pat
h. You
an do it with something likearx get foo.main,121 foo
d fooarx replay --exa
t foo.main,122arx replay --exa
t foo.main,133arx replay --exa
t foo.main,156arx diff -o big_pat
h --revision foo.main,121This gets revision 121, applies the various pat
hes sele
tively, and then puts the agglomeratedpat
h into the dire
tory big_pat
h.5.9 Working with Large Trees5.9.1 arx editBy default, ArX is set up to be very
areful when looking for
hanges. This means that ArXhas to look at the
ontents of every �le before it
an de
ide whether it has
hanged. This
an be prohibitively slow for large proje
ts. So ArX o�ers another mode of operation whereyou
an promise not to edit a �le unless you spe
i�
ally tell ArX. This approa
h is similarto what Perfor
e and Bitkeeper do.You
an take advantage of this mode of operation by using the --no-edit option toget. ArX will download the revision and then
hange the permissions on all of the �les toread-only. To edit a �le, you have to run arx edit and ArX will
hange the �le to writeable.Then, when you run arx
ommit, ArX will on
e again mark the �les as read-only. You donot have to run arx edit in order for arx rm, arx mv, and arx property to work.The advantage of this is that when ArX �gures out what you have
hanged for diff or
ommit, ArX only has to look at the short list of �les that you have marked (via edit, rm,39

mv, and property). This
an redu
e the time for these
ommon operations from minutes tonear-instantaneous. However, some people �nd this mode of operation in
redibly annoying.Others hardly noti
e it. You only need to use it if you are running into problems. In general,if your proje
t tree is in memory, ArX humms right along. However, if the proje
t tree isnot in memory, ArX has to load it from disk whi
h
an take a rather long time. Whetheryour tree is in memory depends on your individual work patterns.If you de
ide that you want to always work in this mode of operation, you
an set totrue the no-edit parameter in arx param. Then get will always run as if the --no-editoption is present.5.9.2 link-treeIn addition to the --no-edit option, there is a --link-tree option. It is only useful withthe --no-edit option. The --link-tree option will use hard links when getting a tree,redu
ing both the spa
e and time required. However, be
ause it links with
a
hed revisions,write permissions in the
a
he will get modi�ed as well. This means that versioned writepermissions will, in general, be unreliable. If it turns out that write permissions are notimportant for your proje
t (as is often the
ase), then --link-tree
ould well be a usefuloption. Like no-edit, you
an set the link-tree parameter in arx param to make hardlinked trees the default.5.9.3 TimestampsAnother possible method that
ould have been used is to save timestamps of �les on theinitial get. Then �guring out whether a �le has
hanged means ArX would only have tolook at the timestamp of a �le. You
an also
ompare more than just timestamps (e.g. size).This method is very popular, being used by TLA, Dar
s, Subversion, CVS, and Stellation.It is a little ni
er interfa
e, sin
e you do not have to expli
itly mark a �le as editable beforeediting.However, it falls down on many
ommon �lesystems. Many �lesystems have a timestampresolution of one se
ond. That means that if you get a proje
t tree and edit a �le all withinone se
ond, then that �le will not show up as
hanged. Normally, people
an not type thatfast, so it is not a problem. However, if you are using some kind of automati
 pat
h robot(as in se
tion 5.3.4), then the robot will
reate a proje
t tree and apply the pat
h. Some
hanges to �les may then be
ommitted, and others not. In general, any kind of s
ripted use
an
ause these problems.These problems are not a
ademi
. All of the aforementioned version
ontrol systems havehad problems arising from these inexa
t timestamps. Dar
s even has an --ignore-timesoption, whi
h is great if you remember to use it. Be
ause of this inherent unreliability, ArXdoes not implement this method.
40

5.10 Cryptographi
 Che
ksums and Signatures5.10.1 TheoryOn
e data is stored in an ar
hive, it may be
ome modi�ed or
orrupted. These modi�
ations
ould be a

idental (e.g. disk
orruption) or intentional (e.g. someone trying to insertmali
ious
ode).To dete
t these modi�
ations, the �rst thing that ArX uses is
he
ksums. There aretwo kinds of entities that get
he
ksums in ArX: pat
hes and revisions. A revision is just a
omplete sour
e tree, and a pat
h is what gets you from one revision to another. Pat
hesare simply tar'd, gzip'd �le trees, and gzip has its own
he
ksum. Revision
he
ksums aremore
ompli
ated.Whenever ArX stores a revision in the ar
hive, it
reates a manifest �le. The manifest �lelists ea
h path in the revision, its properties (set with arx property), and a
ryptographi

he
ksum5 of the path's
ontents. ArX then
omputes a
ryptographi

he
ksum of theentire manifest, and stores that into the ar
hive. When someone downloads a parti
ularrevision, ArX re
reates the manifest �le based on what it has downloaded. ArX then
he
ksthe
he
ksum of the newly
reated manifest �le against the
he
ksum in the ar
hive. All ofthis is
ompletely automati
, and you won't noti
e it unless something goes wrong.However, while this may work great for
at
hing errors due to
orrupted hard drivesand bad memory, it won't stop someone from deliberately inserting mali
ious
ode into thear
hive. They
an always repla
e the
he
ksum while repla
ing the original pat
h. To solvethis, ArX uses
ryptographi
 signatures.On
e again, both revisions and pat
hes
an be signed. Pat
hes are signed dire
tly bystoring a deta
hed signature of the pat
h �le in the ar
hive. Revisions are signed indire
tlyby storing a deta
hed signature of the revision
he
ksum in the ar
hive. In addition, ArXstores in the ar
hive a list of
ryptographi
 keys that are allowed to sign revisions in thatar
hive.So the �rst time a person downloads a revision or pat
h from a parti
ular ar
hive, ArXwill download the list of
ryptographi
 keys. ArX will then download the a
tual revision orpat
h and
he
k to make sure that it is properly signed by someone in that list.ArX uses Gnu Priva
y Guard (gpg) to do the a
tual
reation and veri�
ation of signa-tures. This has an advantage over other types of signatures (e.g. X.509) in that a number ofpeople already have a gpg key. An X.509
erti�
ate would just be another se
ret to prote
t,another password to remember, et
. In addition, your gpg publi
 key may be already beknown to the re
ipient.For those of you already using gpg, ArX does not use the usual web of trust. If you wantto download a revision from a random pla
e on the web, you don't want to have to extendyour trust for other things to this parti
ular publi
 key. Moreover, if someone managesto
ompromise one person's key, they may be able to subvert a larger number of proje
ts.However, this does mean that you should verify the publi
 keys you download.It should also be noted that, while ArX uses SHA-256, gpg may internally use somethingweaker (e.g MD5 or SHA-1). If you are
on
erned, you should
onsult the gpg do
umentation5ArX uses SHA-256 for its
ryptographi

he
ksum. This
he
ksum has no known weaknesses (as opposedto MD5 or SHA-1), and should be su�
ient for the next 50 years or so.41

to make sure you are using a se
ure hash.5.10.2 Pra
ti
eAs noted before, you do not need to do anything for ArX to support
he
ksums. ArX willautomati
ally
reate and validate all
he
ksums and let you know if there are any problems.To verify signatures of signed ar
hives, you only need to have
ompiled ArX with gpgsupport. ArX will automati
ally download publi
 keys, and download and verify signatures.You
an use arx ar
hives to see what publi
 keys are asso
iated with an ar
hive and verifythat the keys are genuine. You
an qui
kly verify the signatures for all of the revisions in abran
h with the sig
ommandarx sig d
oyote�example.or
/helloTo sign your own ar
hives is where you have to do some work. Signatures are managed ona per-ar
hive basis. Either everything in the ar
hive is signed, or nothing is. To
reate anar
hive that will be signed, use the --key option to make-ar
hive. For examplearx make-ar
hive --key d
oyote�example.org \d
oyote�example.org--ar
hive ar
hiveThe argument to --key
an also be a gpg �ngerprint. If you want every ar
hive you
reateto be signed, then use arx param to set the gpg-key parameter to your gpg publi
 key. Thiswill also set what your default key to sign ar
hives will be.On
e you have a signed ar
hive, ArX will ask for your gpg passphrase ea
h time you
ommit. This means that you will have to type in a passphrase twi
e ea
h time you
ommit:on
e for the pat
h and on
e for the revision. That
an qui
kly get tedious. So you
an tellArX to use a program su
h as quintuple-agent to store your password. For quintuple-agent,that would bearx param gpg agpgNow ArX will use agpg when trying to sign and verify revisions. Quintuple-agent alsorequires you to set up an agent, whi
h you will have to do separately.If you have already
reated an ar
hive and you want to make it signed, you �rst need toadd your publi
 key to the ar
hive using a
ommand likearx sig --ar
hive --add d
oyote�example.org--ar
hive/Then you
an manually sign ea
h pat
h and revision with something likearx sig --add d
oyote�example.org--ar
hive/hello,0or just sign all the pat
hes and revisions in a bran
h witharx sig --add d
oyote�example.org--ar
hive/hello42

If you have any mirrors, you should delete them and re-mirror.You
an also delete a signature with the --delete option. All of these examples will addor remove your default gpg publi
 key set with arx param. To add or delete a di�erent key,use the --key option.Finally, you need to let everyone else know that your ar
hive is now signed. Other peoplea

essing the ar
hive will not automati
ally update the list of keys to trust. So if you try tosign revisions with the new key, they will not validate the signature. They must unregisterand reregister the ar
hive.5.11 InternationalizationArX takes a laissez-faire attitude to internationalization. In parti
ular, ArX treats everythingas a sequen
e of bytes, and does not attempt to
onvert anything into a
anoni
al form (e.g.UTF-8). So �le
ontents
an be in any en
oding, and ArX will not
are. If Gnu di� thinksthat a �le is binary, then ArX will use a binary di� and pat
h. This prevents automati
merging, but otherwise everything will work �ne. Moreover, ArX does not do any line-ending
onversions for Windows and Unix
lients.The situation with �le and dire
tory names is more
omplex. ArX uses C Posix API's su
has stat() whi
h require null terminated strings. So if your �le names have any embedded nulls,you will qui
kly run into problems. What this means is that if you use UTF-8 everywhere,then you should have no problems. With the various Latin en
odings, all of the �les will bestored
orre
tly, but they may not display
orre
tly if someone has a di�erent lo
ale.No guarantees are made for other en
odings. In parti
ular, Shift-JIS, Big5, VISCII,and KOI8 will probably have problems. Those en
odings use the slash �/�
hara
ter in amultibyte
hara
ter, whi
h will make ArX think that the path is referen
ing a subdire
tory.5.12 In
luding one proje
t within anotherSuppose you have proje
ts foo and bar, and you want to merge proje
t bar into foo. Thatis, you want all of the �les in bar to be present in foo. All you need to do is move all ofthe �les in bar into foo with �arx mv�. Then you just syn
ronize the foo tree with bar withhistory --add and then
ommit. All of the history will be preserved, even if pat
hes areapplied from the old proje
t.5.13 Proje
t Tree Inventories5.13.1 Inventory IdsWhen ArX is looking at a path, ArX wants to assign the path a unique identity that willpersist even when the path is renamed. ArX does this with inventory ids. An inventory id isjust an alternate name for a path. When a path is �rst introdu
ed to ArX with �arx add�,it will have an inventory id asso
iated with it.43

Type Stored in Ar
hive? Created by tree-lint warning?sour
e Yes User No
ontrol Yes ArX Noignored No User Nounre
ognized No User/ArX YesTable 5.1: Inventory TypesInventory ids are
ontained inside a small �le inside the _arx dire
tory whi
h you shouldnever deal dire
tly with. When you need to move or delete the path asso
iated with theexternal inventory id �le, you must use �arx mv� and �arx rm�. Otherwise ArX will get
onfused.If you do not expli
itly add a path, then it will not get ar
hived. tree-lint andinventory
ome in handy here. If you do not use ArX to move and delete paths, thenArX will noti
e when you try to
ommit and for
e you to �x it.5.13.2 Inventory TypesWhen ArX looks at a proje
t tree, it likes to divide the paths into various types. Thereare �ve di�erent types: nested_tree, sour
e,
ontrol, ignored, and unre
ognized. Anested_tree is merely a proje
t tree within a proje
t tree. The other types require moreexplanation.These types
ome about be
ause ArX has some de
isions to make when looking at a �le.ArX has to de
ide whether a �le will get stored into an ar
hive. Files
lassi�ed as sour
e or
ontrol are stored in the ar
hive, everything else will not be. The only di�eren
e betweensour
e and
ontrol is that you
reated the sour
e paths, while ArX
reated the
ontrolpaths. For �les that are not being ar
hived, ArX has to know whether it should warn theuser during tree-lint. Only unre
ognized �les trigger warnings just by being
lassi�edas unre
ognized. This is summarized in Table 5.1.The algorithm that ArX uses to
lassify a path is:1. If the path is a dire
tory and has an _arx subdire
tory, then it is a nested_tree.2. If the path is in the _arx dire
tory, then it is
ontrol.3. If the path has an inventory id, then it is sour
e.4. If the path's name mat
hes with the regex for ignore, then it is ignore.5. Otherwise, it is unre
ognized.�arx inventory� will print out a list of all of the paths and how they have been
lassi�ed.By default, inventory will not print out the
ontrol paths. The default regex for ignoreis empty. You
an
hange it with �arx ignore�. For example, to
hange the ignore regex toignore �les ending with .o, .bak, or ~, the
ommand would bearx ignore "^.*(.o|.bak|~)$" 44

ArX uses Boost.Regex, whi
h uses the regular expression syntax des
ribed in ECMA-262,ECMAS
ript Language Spe
i�
ation, Chapter 15 part 10, RegExp (Regular Expression)Obje
ts (FWD.1).5.14 Pristine TreesArX normally stores a
omplete
opy of the proje
t tree in the _arx dire
tory. This allows
ommands whi
h need to
ompare against a previous revision, su
h as
ommit, diff, undo,and file-undo, to
omplete qui
kly. Also, if ArX has to get a parti
ular revision, it
anuse that pristine tree as a base to start from instead of having to fet
h everything from thear
hive.Usually, a proje
t tree will only have the pristine tree of the latest revision. ArX willautomati
ally keep it up to date for you. Sometimes, you may �nd it useful to have pristinetrees from other revisions, su
h as revisions that have bran
hed o� of yours. You
an query,add, or remove pristine trees with tree-
a
he.One problem with pristine trees is that they do take up more spa
e. See se
tion 5.9.2 forone strategy for ameliorating that.5.15 Additional ToolsIn
luded with the ArX distribution are a few additional tools.
• A bash
ompletion
ode to make typing many of the
ommands less onerous.
• An ema
s mode whi
h integrates ArX into the editor.
• A python s
ript
he
k_moved.py whi
h is useful when importing pat
hes from non-ArX users. A di�
an simulate a �le rename by deleting and re-adding the �le.
he
k_moved.py will dete
t that and �x up the internals of ArX to
orre
tly tra
kthat move.
• A pat
h-queue manager pqm. See Se
tion 5.3.4.

45

Chapter 6Beyond this manualThis manual has presented most of the
ommands available. If you want to �nd out whatall of the
ommand's are,arx --help-
ommandswill print them out. By ne
essity, this manual has not plumbed all of the various options tothe
ommands. All of the
ommands have a help s
reen that
an be a

essed with the �help
ommand.

46

Appendix APat
h AlgorithmThere are three possible relations between two obje
ts: parent (p),
hild (
), and other (o).A parent is a parent dire
tory,
hild is a
hild dire
tory, and other is something that is not inthe same hierar
hy. Viewed this way, there are nine di�erent possible ways to move things:1. p->p2. p->
3. p->o4.
->p5.
->
6.
->o7. o->p8. o->
9. o->oWe also want things that are in a dire
tory that is being renamed or deleted to be automat-i
ally renamed or deleted if they are not otherwise spe
i�ed.If someone doesn't want things to be automati
ally deleted, then we
an only deletedire
tories that are already empty, be
ause the
ontents have all been eliminated.The basi
 algorithm is:1. Get a list of all renames and deletes, and sort it so that the bottom-most elements are�rst. That is, if we havea/a/b/a/
/a/d/a/b/
 47

a/
/
Then it should get sorted as something likea/d/a/
/
a/
a/b/
a/ba/Note that this is both renames and deletes. For example, a/
 might be deleted anda/
/
 might be renamed.2. In this bottom-up ordering, we rename the deleted �les to �delete-0, �delete-1, ...and renamed �les to �renamed-0, �renamed-1, ... in the temp dire
tory. If a sour
edoes not exist,
omplain and put a note somewhere.3. Figure out where a path should go. If the path is just being renamed (foo/a -> foo/b)as opposed to being moved (foo/a -> bar/a), then just rename the path regardlessof its
urrent parent. If it is just being moved, then move the path, regardless of its
urrent name. Note that ArX knows if a parent dire
tory has been moved and putsthe path in the right pla
e. If the destination parent does not exist, signal a
on�i
tand put the path in the destination given by the pat
h.4. Sort the destinations of the renames in a top-most fashion (opposite of bottom-up).Move the renames into their destination using this ordering. If the destination exists,rename the destination to (original_name).orig. If _that_ exists, then we try .orig-1,.orig-2, ...5. If we are removing deletes, then just delete all of the �delete obje
ts. If we arekeeping them, then do a similar rename for the �delete-* �les, moving things toa �removed-by-dopat
h dire
tory but it has the original name. There should be no
on�i
ts when doing this rename.6. Delete the temporary dire
tory. There should be nothing in it.7. Apply regular and metadata pat
hes to paths.

48

Appendix BCon�i
tsThere are 12 di�erent types of possible
on�i
ts. Most of these types are related to movingand renaming paths. One thing to keep in mind is that ArX handles renames (foo/a ->foo/b) separately from moves (foo/a -> bar/a). So there
an be
on�i
ts related to theparent dire
tories separately from the renamed path.1. Merge: There was a
on�i
t when applying a three-way merge to a �le. This is themost
ommon type of
on�i
t when merging �les, where two people make
on�i
ting
hanges to a single �le. ArX prints out the lo
ations of the partially merged �le, theoriginal version in the tree, the an
estor's version, and the sibling's version. For exam-ple, ArX might print outfoo foo.tree foo.an
estor foo.siblingIf a merge s
ript exists (see Appendix C.1), ArX will invoke the s
ript for these �les.2. Pat
h: There was a
on�i
t when applying a pat
h to a �le. This is the most
ommontype of
on�i
t when using replay or the pat
h algorithm in merge, where two peoplemake di�ering
hanges to the same �le. ArX prints out the lo
ations of the �le withperhaps some parts of the pat
h applied, a
opy of the �le before it was pat
hed, anda
opy of the reje
ted hunks of the pat
h. For example, it might print outfoo foo.orig foo.rejIf a pat
h-merge s
ript exists (see Appendix C.2), then ArX will invoke the s
ripton these �les.3. xdelta: There was a
on�i
t when applying a pat
h to a binary �le. ArX uses thexdelta algorithm to
ompute di�s between binary �les, and pat
hes to binary �les onlywork if the �le is exa
tly what is expe
ted. So there is no fuzz fa
tor to allow formodi�ed �les to be pat
hed. ArX prints out the name of the �le and the reje
tedxdelta pat
h. For example, it might print outfoo foo.xdelta 49

Unfortunately, there is not mu
h that you
an do with .xdelta �les. They use adi�erent format than the xdelta program.4. Move Target: The destination of a rename is already o

upied. For example, if thepat
h renames foo to bar, and bar already exists. ArX prints out the
ontended nameand where the original has been moved. In this example, ArX would print outbar bar.orig5. Move Parent: The parent of a path that has been renamed has been
hanged in somein
ompatible manner. For example, if a pat
h renames foo/a to bar/a, but the �le isin dire
tory baz. ArX prints out the initial pla
ement of the moved path, the pat
hesinitial parent dire
tory, and the pat
hes destination parent dire
tory. In this
ase, ArXwould print outbaz/a foo => bar6. Rename: The name of a path has been
hanged in some in
ompatible manner. Forexample, if a pat
h renames foo/a to foo/b, but the �le is already named foo/
. ArXprints out the initial lo
ation of the moved path, the pat
hes initial lo
ation of themoved path, and the pat
hes destination of the moved path. In this
ase, ArX wouldprint outfoo/
 foo/a => foo/b7. Deleted Parent: The parent dire
tory for the destination of a move has been deletedby this pat
h. For example, suppose the pat
h moves foo/a -> bar/a and deletes thedire
tory baz, but bar has been moved into a subdire
tory of baz. ArX prints out thepat
hes initial and �nal destination. In this
ase, ArX prints outfoo/a => bar/a8. No Parent: The parent dire
tory for the destination of a move path has been deletedoutside of this pat
h. For example, if the pat
h moves foo/a to bar/a, but bar wasdeleted before the pat
h was applied. This di�ers from a Deleted Parent
on�i
t wherethe parent dire
tory is deleted in the pat
h itself. ArX prints out the pat
hes initialand �nal destination. In this
ase, ArX prints outfoo/a => bar/a9. Missing Moves: A path that is being moved seems to be missing. ArX will print outthe pat
hes initial and destination lo
ation, and the path's inventory id. For example,it might print outfoo bar 32472534872abd896d
986de22f87de9fef997a97
bd97e9779824234827648d50

10. Missing Pat
hes: A path that is being pat
h seems to be missing. ArX will print outthe pat
hes path lo
ation.11. Add: A path is being added with the same inventory id. For example, you might havea path foo with the inventory id a9de..., and you are trying to add a path bar withthe same inventory id. ArX will print the path you are trying to add, the path that
on�i
ts with it, and the inventory id. For this example, ArX will print outbar foo a9de...Note that ArX will only signal a
on�i
t if either the name or the
ontent of thepath is di�erent. So if you apply an ArX pat
h and then immediately reapply it, youshould not get any of these kinds of
on�i
ts.12. Dire
tory Loop: ArX en
ountered a loop when trying to move a path. This
on�i
thappens when the pat
h tries to move a dire
tory to its own subdire
tory. For example,suppose the pat
h moves foo -> bar/foo, but the tree already has foo/bar. If ArXdete
ts a dire
tory loop, ArX will try to move everything ba
k to where it was before.This may
ause additional
on�i
ts if some parent dire
tories are deleted. ArX willprint out the paths
urrent lo
ation and the pat
h's initial and destination lo
ations.For this example, ArX will print outfoo foo -> foo/bar/foofoo/bar bar/foo -> bar/foo/bar/fooNote that ArX inferred the move of foo/bar -> bar/foo/bar/foo.

51

Appendix CSample Merge S
ripts
C.1 Three way mergesArX looks in ~/.arx/merge3 for an exe
utable merge s
ript. The s
ript is given four argu-ments1. The original tree �le2. The an
estor �le3. The sibling �le4. The destination tree �leC.1.1 Meldrm �$4�mv �$1� �$4�meld �$2� �$4� �$3�C.1.2 Xxdi�rm �$4�xxdiff --title1 an
estor --title2 tree --title3 sibling -M �$4� --show-merged-pane �$2� �$1� �$3�C.1.3 kdi�3rm �$4�kdiff3 --L1 an
estor --L2 tree --L3 sibling -o �$4� �$2� �$1� �$3�C.1.4 gvimdi�rm �$4�mv �$1� �$4�gvimdiff �$2� �$4� �$3� 52

C.1.5 X/Ema
srm �$4�ema
s --eval �(ediff-merge-files-with-an
estor \�$1\� \�$3\� \�$2\� nil \�$4\�)�C.2 Pat
h mergesArX looks in ~/.arx/pat
h-merge for an exe
utable merge s
ript. The s
ript is given threearguments1. The original tree �le2. The .rej �le3. The .orig �leAt present, the only tool that works well with .rej �les is X/Ema
s. The s
ript for X/Ema
sis simplyema
s $2The following is a re
ipe from Miles Bader for using ema
sIf you're using an up-to-date version of ema
s (I mean the original GNU Ema
s,I'm not sure about xema
s), it should enter di�-mode automati
ally when youvisit the .rej �le. From there, there are several useful
ommands you
an use, forinstan
e, putting the
ursor in a di� `hunk', and pressing `C-
 C-
' will attemptto jump to the
orresponding lo
ation in the sour
e �le; typing `C-
 C-a' whilein a hunk will try to a
tually apply the hunk (and will fail if it
an't). Applyinga hunk from di�-mode sometimes su

eeds where pat
h failed, though I'm notexa
tly sure why, as it's a
tually more stri
t about mat
hing the original �le (itdoesn't do `fuzzy' appli
ation).So for instan
e a typi
al strategy I'll use is:(1) Visit the .rej �le in ema
s; this will automati
ally be in di�-mode(2) Make the bu�er writable so I
an modify the .rej �le; this is just my personalstyle, you don't have to do this. di�-mode by default makes the bu�er read-only,but I like to delete ea
h hunk su

essfully applied, to make bookkeeping easierfor big .rej �les.(3) Use the
ommand `M-U' �rst, whi
h
onverts the .rej �le into `uni�ed di�'format, whi
h I �nd easier to read; again this is not ne
essary though, justsomething I like (and of
ourse the bu�er must be writable from step (2) to dothis!).For ea
h hunk: 53

(3) Use C-
 C-a to try to apply the hunk; if appli
ation su

eeds, delete the hunkfrom the .rej �le with `M-d' (.rej bu�er must be writable to do this), and go onto next hunk, otherwise:(4) Use C-
 C-
 to �nd the sour
e lo
ation � this
ommand will use line numbersas a ba
kup strategy, so it usually gets you at least
lose � and see if there'ssome obvious problem where the sour
e �le has
hange from what the pat
h isexpe
ting.(5) If there's an obvious di�eren
e, say added
ode in the hunk's
ontext lines,_modify the hunk_ to mat
h the sour
e, making sure any new lines you addto the hunk in
lude appropriate di� line-start
hara
ters (' ', '+', '-'). di�-modewill automati
ally make sure that the hunk line
ounts et
 are kept up-to-date.Of
ourse this requires
are, but I �nd it easier to think about the intera
tionof
hanges if I keep the sour
e �le un
hanged and update the hunk. If the hunkthen applies, then delete it and
ontine as in step (3).(6) Sometimes di� generates really big hunks, whi
h in
lude many individual
hanges, and are di�
ult to think about as a whole. For these, I often use thedi�-mode `C-
 C-s'
ommand, to split the
urrent hunk into two smaller hunksat the
urrent line (this only works in uni�ed di� format, for obvious reasons),and then deal with ea
h smaller hunk individually. Sometimes, if you're not surewhere the problem in a big hunk is, you
an use C-
 C-s to do a binary sear
hfor the mismat
h point (and use ema
s' undo
ommand to undo any split that'snot useful).The above might sound a bit
ompli
ated, but really it's not to bad on
e youknow the di�-mode
ommands.The
ru
ial thing I think, is that it's _mu
h_ easier to handle non-trivial
on�i
tswith proper .rej �les,
ompared to CVS
on�i
t markers. the main reason I think,is that pat
h is more
onservative, and requires a
ertain amount of surrounding
ontext to mat
h for a pat
h to be applied, and in
ludes the failing
ontext inthe .rej �les so you
an see what happened. Together with di�'s habit of mergingadja
ent hunks into bigger hunks, this means that potentially problemati
 mergesare more likely to simply fail � whi
h is a _good_ thing...CVS requires _no
ontext_, and though this
an be
onvenient for `obvious'
ases, by the time that you realize something is non-obvious, it's already toolate, CVS has already applied a bun
h of possibly in
orre
t
hanges, intermixedwith non-applied
hanges using
ontext markers.-Miles
54

Glossaryar
hive A dire
tory where revisions are stored. See Se
tion 5.1bran
h A spe
i�
 line of development. See Se
tion 5.1.1inventory id A unique name for a path that persists a
ross renames. See Se
tion 5.13.1path A �le or dire
tory. In many
ase, ArX treats �les and dire
tories in very similar ways.proje
t A
olle
tion of all of the various bran
hes and revisions that make up a parti
ularwork.proje
t tree A dire
tory that
ontains a working
opy of your work.pristine A prote
ted, unaltered
opy of a parti
ular revision, normally stored in a proje
ttree in the {ar
h} subdire
tory. See Se
tion 5.14revision A snapshot of the work at a parti
ular time,
omplete with a pat
h log des
ribinghow it di�ers from previous revisions. See Se
tion 5.1.1whole-tree
ommits A
ommit that involves all of the �les in a proje
t tree.

55

