Cybernetics Oriented Programming

(CYBOP)

An Investigation on the Applicability of Inter-Disciplinary Concepts

to Software System Development

Christian Heller

Cybernetics Oriented Programming

(CYBOP)

An Investigation on the Applicability of Inter-Disciplinary Concepts

to Software System Development

llmenau

Cataloging-in-Publication Data

Christian Heller.

Cybernetics Oriented Programming (CYBOP):

An Investigation on the Applicability of Inter-Disciplinary Concepts
to Software System Development

llmenau: Tux Tax, 2006

ISBN-10: 3-9810898-0-4

ISBN-13: 978-3-9810898-0-6

Information on Ordering this book

http://www.tuxtax.de, http://www.cybop.net

Written as Dissertation

Supervisor 1: Prof. Dr.-Ing. habil. llka Philippow (Chair), Technical University of limenau
Supervisor 2: Prof. Dr.-Ing. habil. Dietrich Reschke, Technical University of limenau, Germany
Supervisor 3: Mark Lycett (PhD), Brunel University, Great Britain

Submission: 2005-12-12; Presentation: 2006-10-04

Copyright (© 2002-2006. Christian Heller. All rights reserved.

Cover lllustration: TSAMEDIEN, Dusseldorf
Printing and Binding: Offizin Andersen Nexd, Leipzig/ Zwenkau

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, with no Front-Cover Texts and with no Back-Cover Texts.

A copy of the license is included in the section entitled " GNU Free Documentation License”.

Trademark Credits
Most of the software-, hardware- and product names used in this document are also trademarks

or registered trademarks of their respective owners.

Donations
Companies planning to publish this work on a grand scale are asked to notify the author
<christian.heller@tuxtax.de> and to consider donating some of their sales revenues, which will

be used exclusively for the CYBOP and Res Medicinae free software projects.
Text printed on recycled and acid-free paper.

Printed in Germany

To all kind-hearted People who contribute to Humanity;

against Those whose only Aim in Life is to amass Money

Contents

Preface

1 Introduction
1.1 Information Science
1.2 Software Crisis
1.3 Motivation L
1.4 Cybernetics L
1.5 Method e
1.6 Example e
1.7 Structure

I Basics

2 Software Engineering Process
2.1 Waterfall Process
2.2 lterative Process L
2.3 Agile Methodologies
2.4 Extreme Programming
2.5 Method Maturity
2.6 Abstraction Gaps e
2.7 Software Architecture

Physical Architecture
3.1 ProCess.

3.2 Application Servero

XV

11

13
14
14
16
17
19
19
22

viii Contents
3.3 Database Server 28
3.4 Presentation Client L 30
3.5 Web Client and Server. 31
3.6 Local Process 32
3.7 HumanUser 33
3.8 PeerNode 34
3.9 Remote Server 35
3.10 Legacy Host 36
3.11 Systems Interconnection L 37
3.12 Scalability 39
3.13 Misleading Tiers 40

4 Logical Architecture 43
4.1 Paradigm and Language 45

4.1.1 Language History 45
4.1.2 Paradigm Overview 47
4.1.3 Hardware Architecture 48
4.1.4 Machine Language e 51
4.1.5 Assembly Language 51
4.1.6 Structured- and Procedural Programming 51
4.1.7 System Programming 57
4.1.8 Typeless Programming 58
4.1.9 Functional Programming 58
4.1.10 Logical Programming 60
4.1.11 Data Manipulation Language oo 61
4.1.12 Markup Language 61
4.1.13 Page Description Language 66
4.1.14 Hardware Description Language 67
4.1.15 Object Oriented Programming 68
4.2 Pattern 79
421 Architectural 81
422 Design 97
423 Idiomatic. 103
424 Framework 107
4.3 Component Oriented Programming 109

4.3.1 Inversionof Control 110

Contents ix

4.3.2 Component Lifecycle 111
4.3.3 Interface and Implementation 112
4.3.4 Separation of Concerns 113
4.3.5 Spread Functionality 115
4.3.6 Aspect Oriented Programming 117
4.3.7 Agent Oriented Programming 120

4.4 Domain Engineering 122
441 Tool & Material 124
442 Generics 124
4.4.3 Domain Specific Language Lo 125
4.4.4 Specification Language 127
4.45 Generative Programming oL Lo 131
4.4.6 Model Driven Architecture 131
447 Modeland Code 133

4.5 Knowledge Engineering Lo 135
4.5.1 Representation Principles00 137
452 Dateand Rule 137
453 Agent Communication Language 138
454 SemanticWeb 141

4.6 Conceptual Network 143
4.6.1 Ontosand Logos 144
4.6.2 Applicability 145
4.6.3 Two Level Separation 145
4.6.4 Building Blocks 146
4.6.5 Terminology 148
4.6.6 Schemes 149
46.7 Ontology e 152
4.6.8 Archetype 153
4.6.9 Dual Model Approach 155

4.7 Modelling Mistakes 158
5 Extended Motivation 161
5.1 Idea e 162
5.2 Recapitulation 163

53 Approach 165

X Contents

Il Contribution 171
6 Statics and Dynamics 173
6.1 Virtual- and Real World 173
6.1.1 Mindand Body 173
6.1.2 BrainRegions 176
6.1.3 Cell Division 177
6.1.4 Short- and Long-Term Memory 178
6.1.5 Information Processing Model 180
6.1.6 Persistent and Transient 181

6.2 System and Knowledge 182
6.2.1 Configurable or Programmable 182
6.2.2 Code Reduction 184
6.2.3 Base-and Meta Levelo 185
6.2.4 Reference- and Archetype Model 185
6.2.5 Common- and Crosscutting Concerns 186
6.2.6 Application and Domain L0 oL 187
6.2.7 Platform Specific and -Independent 189
6.2.8 Agent with Mental State 189
6.29 DataGarden 190

6.3 Knowledge Management System 192
6.3.1 Hardware Connection L. 192
6.3.2 Memory e 194
6.3.3 Processing 194
6.3.4 Lifecycle 196

7 Knowledge Schema 199
7.1 Human Thinking 199
7.1.1 Basic Behaviour 199
7.1.2 Conglomerate 201
7.1.3 Abstraction 202
7.1.4 Interaction 207
7.1.5 Intrinsic or Extrinsic Propertieso 210
7.1.6 Language 210
7.1.7 Quality and Quantity 213

7.2 Design Reflections 214

Contents xi
7.2.1 Pattern Systematics 214
7.2.2 Recommendation 216
7.2.3 Model Metamorphosis 217
7.2.4 Structure by Hierarchy 221
7.2.5 Association Eliminationo 0oL 222
7.2.6 Hierarchical Algorithm 224
7.2.7 Framework Example Lo 225
7.2.8 Categorisation versus Composition 229

7.3 Knowledge Representation 230
7.3.1 Knowledge Ontology 230
732 Schema 234
7.3.3 Double Hierarchyo 235
7.3.4 Modelling Example Lo 237
7.3.5 Container Unification 239
7.3.6 Universal Memory Structure 239

8 State and Logic 243

8.1 A Changing World e 243
8.1.1 Change follows Rules, 243
8.1.2 From Philosophy to Mathematics 244
8.1.3 System 247
8.1.4 Self Awareness 250
8.1.5 Communication 253

8.2 Translator Architectureo 257
8.2.1 Interacting Systems 257
8.2.2 BasicPatterns 259
8.23 Placement 261
8.2.4 Simplification 262
8.2.5 Communication Model 263

8.3 Knowledge Abstraction and -Manipulationo 000 L 265
8.3.1 Algorithm 265
8.3.2 Operations 266
8.3.3 Primitives L 266
8.3.4 Logic Manipulates State L Lo 267
8.3.5 Without Capsules? 269

Xii

Contents

111 Proof

9 Cybernetics Oriented Language

9.1
9.2

9.3

9.4

9.5

Formality
Definitiono
9.21 Syntax
9.2.2 Vocabularyo
9.23 Semantics

9.2.4 Tag-Attribute Swapping

Constructs
9.3.1 State Examples
9.3.2 Logic Examples
9.3.3 Special Examples L.

9.3.4 Inheritance as Property

9.3.5 Container Mapping
9.3.6 Hidden Patterns
Comparison
941 RDF
942 OWL.
Tool Support
9.5.1 Template Editor
9.5.2 Knowledge Designer
9.5.3 Model Viewer

10 Cybernetics Oriented Interpreter

10.1

10.2

Architecture
10.1.1 Overall Placement
10.1.2 Inner Structure
10.1.3 Pattern Merger
10.1.4 Kernel Concepts
10.1.5 Security
Functionality in Detail
10.2.1 Process Launching.
10.2.2 Lifecycle Management
10.2.3 Signal Checking
10.2.4 Signal Handling

271

273

Contents Xiii
10.2.5 Operation Execution L 324
10.2.6 Model Transition L 324
10.2.7 Data Creation 325

10.3 Implementation 327
10.3.1 Simplified C 327
10.3.2 Corrected C 328
10.3.3 Used Libraries 328
10.3.4 Development Environment Lo 329
10.3.5 Error Handling 329
10.3.6 Distribution and Installation 330

11 Res Medicinae 331

11.1 Project 331
11.1.1 Free and Open Source Software 331
11.1.2 Portals and Services 332
11.1.3 Tools o e 333
11.1.4 Contributors 334

11.2 Analysis e 335
11.2.1 Requirements Document 335
11.22 EHR & Co. 335
11.2.3 Episode Based 337
11.2.4 Evidence Based 338
11.2.5 Continuity of Care 339
11.2.6 Core Model 339

11.3 Standards 341
11.3.1 Overview o o 341
11.3.2 Record Modelling 342
11.3.3 Messaging and Communication 344
11.3.4 Terminology Systems 347
11.3.5 Further Standards 352
11.3.6 Standards Development L. 355
11.3.7 Implication 356

11.4 Realisation 357
11.4.1 Student Works L 357
11.4.2 First Trial o 359

11.4.3 Knowledge Separation 360

Xiv Contents

11.4.4 Reimplementation 362

11.4.5 Module Modelling 363

IV Completion 367
12 Review 369
12.1 Validation L 369
12.1.1 Distinction of Statics and Dynamics 370

12.1.2 Usage of a Double-Hierarchy Knowledge Schema 372

12.1.3 Separation of State- and Logic Knowledge 373

12.2 Evaluation 374
12.2.1 Knowledge Triumvirate 374

12.2.2 Common Knowledge Abstraction 376

12.2.3 Long-Life Software System oL 377

12.3 Limits . . . o o 378
13 Summary and Outlook 381
13.1 Summary e 381
13.2 Future Workso 383
13.3 Fiction e 387
14 Appendices 389
14.1 Abbreviations L 389
14.2 References e 409
14.3 Figures L 437
144 Tables e 443
145 History e 445
14.6 Migration to CYBOL 453
14.7 Call for Developers 455
14.8 Abstract 457
149 Kurzfassung L e 459
14.10Licences 461
14.10.1 GNU General Public License 461

14.10.2 GNU Free Documentation License 469

14.11Index L 479

Preface

I slept and dreamt that Life was Joy.
I awoke and saw that Life was Service.
I acted and behold, Service was joy.

RABINDRANATH TAGORE

Prologue

To me, basically, there are two ways to deal with a scientific subject:

1. The deepened investigation on a special area aiming to find completely new phe-

nomenons

2. The systematic subsumption of multiple known aspects of one or many disciplines

aiming to find new cross-correlations and ideas

Both approaches may lead to new theories, methods and concepts. And both may use
laboratory trials to find and prove their theories. This work follows the second approach.
The idea behind is, simply spoken, to steal ideas from nature and various fields of science,

and to apply them to software design.

Laboratory Trials are what Coding is in informatics — experiment and proof of operability, at
the same time. Some information scientists have the opinion that coding weren’t scientific
enough and not necessary to create new theories or to achieve good results. I doubt this. In
my opinion, there are things that can only be found when actually implementing ideas in a
computer language. And in the end, a theory is worth much more when having been proven
in practice. This document contains proven ideas that were growing in my mind over the

last few years, while dealing with topics such as:

Xvi Preface

- Structured- and Procedural Programming
- Object Oriented Programming

- Design Patterns and Frameworks

- Component Based Design and Agents

- Ontology Structured Domain Knowledge
- Document- and User Interface Markup

- Persistence Mechanisms

- System Communication

- Operating System Concepts

The usage of typical buzzwords could not quite be avoided in this work, yet do I hope that
the ideas and results are nevertheless explained straightforward and well enough to be really

useful to some other developers out there.

This document claims to be an Academic Paper. To all practitioners who do not want to
read it for that reason, I would like to point out that each and every concept in it arose from
practice, that is coding. Like most developers, I started up with only a few lines of code in
one Java class, later extended to more classes, a whole framework and so on. Whenever 1
stumbled over difficulties, I thought through and improved my current design by applying
patterns recommended by several software development Gurus. It was only when I realised
that even those concepts were not sufficient, that I made up my own. They are entitled
Cybernetics Oriented Programming (CYBOP), because most ideas behind them stem from

nature.

Finally, this document has become my thesis, written to earn a doctorate (Dr.-Ing./ PhD)
in Informatics/ Software Engineering. You may wonder why I release it under the Free
Documentation License (FDL). Well, I'm a full supporter of the idea of Free Knowledge,
Free Software, a Society free of Patents which are only hindering its development. There

are three reasons that have contributed to my decision:

1. Hope to get helpful Feedback from readers

2. Trust in the scientific Fairness of colleagues, worldwide, to properly reference this

document even though it is licensed under the FDL

3. Wish to contribute to the open source movement now (and not in some years when the

document might reach a more stable version), to speed up its successful development

Preface Xvii

This is a growing document undergoing steady development. It is not and doesn’t claim to
be free of errors nor to contain the only possible way for application system development.
So, if you find errors of whatever kind or have any helpful ideas or constructive critics,
then please contribute them to <christian.heller@tuxtax.de> or to the CYBOP developers
mailing list <cybop-developers@lists.berlios.de>!

Scientific Progress

An Abstraction allows to capture the real world by representing it in simplified models. Such
models contain only the essential aspects of a special domain. Any unimportant nuances, in
the considered context, are neglected. Correct abstract models is what makes science easy.

Good science can be easy. If it is not, then probably either:

- there is a mistake in the model
- it is not fully understood by the scientist him/ herself

- the explaining person wants to keep back knowledge, making others look clueless

One of the biggest hindrances to scientific progress is too much or false respect for existing
solutions. No theory/ model/ concept is ever finished; no document/ software/ product is
ever fully completed. There is always room for improvements. In the end, it is all just a

person’s subjective perception and an arbitrary, abstract extract of the real world.

It is always worth reviewing and questionning everything in depth, again and again. Stand-
still means regress. The best example showing how to work around these critics is the
Free and Open Source Software (FOSS) movement where all the time, existing solutions are

rewritten, to be improved.

Software Patents

This work is about software. Software abstracts the real world, its items and processes, and
it can store these information and their relations which make up actual Knowledge. In the
modern, so-called Information Society, it becomes more and more important to have free
access to external knowledge. This is an essential human right and will decide about the

future living quality of people.

xviii Preface

So much the important it is to prohibit the application of patents to software! They make an
exclusive club of large companies own the rights on banal, ordinary, day-to-day algorithms
and methods that many people use. And, they thereby kill any new ideas and hinder
research efforts that depend on these basic algorithms. If Software Patents and patents on
Computer Implemented Inventions (CII) got introduced, any free software developer and
especially Small- and Medium Sized Enterprises (SME), the driving force of innovation,
could not unfold their full potential anymore, since much of their time and effort would then

have to go into patent inquiries and costly legal disputes.

Software patents are dangerous for the free development of thoughts! Certain lobbies exert
an increasing influence on politics and push members of parliaments to agitate and vote in
their interest. Since probably every reader of this document has an interest in informatics,
every reader is also affected by the software patent enforcement. But everybody can do

something about it, not only in Europe! Express your protest and sign the petition at [91]!

Free Publishing

Reputation in the scientific world strongly depends on the number of publications in scientific
journals, conference proceedings, magazines etc., of which some have greater kudos, some
less. A Philosophiae Doctor (PhD) student, for example, is expected to publish in some
of the acknowledged journals, in order to be conferred a doctorate. The grant of project
fundings by local-, national- or Furopean Union (EU) governements and sponsorship of
a professor’s department at university depend on it as well. Some unfair practices and
shortcomings of the current system of publication shall therefore be mentioned here. There

are at least four disadvantages of publishing in scientific journals. An author:

e is almost always forced to assign his copyright to the publisher;

e has very little chance of publishing completely new ideas, since evaluators (which
are to guarantee a certain scientific level) sieve those which seem too crazy or are
unknown to them and do not match state-of-the-art science, so that really new ideas

can hardly become popular in this way;

e has to wait many months before being informed about article acceptance, sometimes
further months to presentation at a conference and yet more months until a journal/
proceedings are finally available — which, besides the unfine delay, is enough time for

an evaluator to adapt the best ideas and publish them in a modified form before;

Preface XiX

e and everyone else have to pay money for receiving journals (even for the one containing
the author’s own work), or become a member of certain scientific societies for some

discount — which means that the work is not freely accessible.

Further, there is something often labelled Citation Mafia. Whether an article gets published
in a journal or not depends on it being accepted by a number of reviewers (normally three).
In order to avoid personal battles, the article author never gets to know the evaluators’
names or proficiency and has to blindly rely on the good taste of a conference’s program
committee. However, evaluators, although tied to ethical standards, often seem to have their
list of friends or seem to just prefer authors who have already published elsewhere, leading
to circles of scientists citing each other, quite independent from the quality of their papers.

Logically, also here, there are a number of disadvantages:

e Young scientists have a hard life and need a long time for getting their articles ac-

cepted, independent from how innovative they are.

e Mafioso scientists often warm up old stories or deliver well-formulated, but rubbish

articles not earning the predicate scientific.

Don’t ask for proof — I don’t have it. But almost everybody in the scientific business knows
about these issues. Unfortunately, only few people [166] talk about- or try to change them.
Obviously, many scientists prefer to either play the same old game or are scared of personal
disadvantages. However, it feels like increasingly more researchers, in particular the new
generation, become aware that these drawbacks hinder scientific progress and new solutions
need to be found. Well, there is free online journals such as the Journal of Free and Open
Source Medical Computing (JOSMC) [226] or the BioMed Central (BMC) [326] publisher,

where research articles are: free to access immediately, peer reviewed, citation-tracked ...

Although this document cannot deliver solutions to the above-mentioned problems, it men-
tioned those to inform the reader and spur further discussion. Supportive actions in this

process would be that:
e scientists acknowledge no-cost entry open source conferences like LinuxTag & Co. [82]
as alternatives to traditional ones

e professors more readily accept citations of free knowledge sources such as Wikipedia

[60] in scientific works of their students

e students and scientists publish their works (code and documentation) under open

source licenses

XX Preface

New Science

It was end of October 2004 that I discovered Stephen Wolfram’s book A New Kind of Science
[344] (published in 2002), through a link in Wikipedia [60]. By that time, I was already

heavily writing on my own work.

During those years of thinking about software systems, nature, the universe — I felt pretty
similar to how Wolfram describes it in the preface of his book. Starting with an inspection
of state-of-the-art techniques, diving deeper and deeper into several topics, I soon realised
that they all could not deliver a coherent, conclusive solution to software modelling. Each
had its own drawbacks that made workarounds necessary. And, the more I dived into the
different technologies, the more complex, complicated, intransparent they got — but still,

none seemed to provide an owerall solution.

It was only when I got more and more distance to existing solutions and moved away from
current thinking, towards a more universal approach and a view at software systems through

the eyes of nature, that I found the basic principles described in this work.

Now, after having read A New Kind of Science, I am glad that Wolfram did not already
write down everything I want to say, so that there is something left for me to contribute, by
delivering this work :-) There is one difference that soon became obvious to me: Wolfram
argues, that it is possible to study the abstract world of simple programs, and take lessons
from what kinds of things occur there and have them in mind when investigating natural
systems [60]. My work follows the exact opposite way, in that it observes phenomenons of
nature and concepts used in other sciences, and tries to apply them to the design of software

systems.

This is not to say that CYBOP does provide the overall solution. But what it surely wants
to reach is to encourage people to think in more general terms, across disciplines, to possibly
find new concepts. And for that, this work hopes to deliver some ideas. And I certainly do
hope that the more you, as readers, think about these ideas, the more sense they will make

to you, too.

Stylistic Means and Notation

The language of choice in this document is British English, more precisely known as Com-

monwealth English. Exceptions are citations or proper names like Unified Modeling Lan-

Preface XXi

guage, stemming from American English sources. (In Oxford English, Modelling would be
written with double letter). I am thinking about writing a German version of this doc-
ument, but am not sure if it will be worth the effort. If you as reader are interested in a

translation, send me a short note! The more emails I receive, the more convinced I will be.

Correctly, masculine and feminine forms are used in a work. When describing a patient’s
record, for example, one would write: his or her record. In order to improve readability, and

exclusively because of this reason, only masculine forms are used in this work.

The document sticks to the widespread Unified Modeling Language (UML) [235] standard
notation for describing classical software concepts in diagrams, wherever suitable. Minor

simplifications are applied wherever these result in a clearer illustration with better overview.

Pieces of software source code are displayed in Typewriter Typeface. Emphasised words

are italicised.

Footnotes are not used on purpose. In my opinion, they only interrupt the flow-of-reading.

Remarks are placed in context instead, sometimes enclosed in parentheses.

To all authors and contributors of the Wikipedia Encyclopedia:

I have cited so many Wikipedia articles in this work, that it would not have been possible to
create an extra bibliography entry for each of them, without letting the frame of this work
explode. Therefore, I have just referenced Wikipedia in general, whenever one of its articles

was used.

Some scientists still label Wikipedia a Pseudo Encyclopedia not worth being mentioned in
scientific works. However, it is my firm believe that this will change in the near future and
one day, it will be hard to write any work without referencing Wikipedia knowledge, which

will then (if not already now) be of best quality.

Acknowledgements

Certainly, first thanks is due my wife Kasia and my Parents and Sisters, being always with
me, in good as in bad times. Not less important to me are my aunt Maria Kosiza, my great
Relatives and our former chaplain Johannes Preis, who have helped shaping me the way I

am.

I would like to thank my professor, Ilka Philippow, for greatly encouraging me during my

work while leaving enough room to develop my own ideas. Equal thanks is due my supervi-

XXii Preface

sors Dietrich Reschke and Mark Lycett. Detlef Streitferdt and Bernd Ddne gave numerous
hints improving the quality of the first part of my work. Consultation with Bernd and Wolf-
gang Fengler helped me understand Petri Net diagrams and their hardware background as
well as Assembler programming. Whenever I got doubts about what I was doing, I was very
lucky to receive good motivation from my colleagues Volker Langenhan, Oswald Kowalski,
Todor Vangelov and Kai Bollert. Oswald’s talks about hardware concepts made me find
useful parallels to software. Alexander Fleischer helped out when I was struggling with

IATEX’s paper size option.

My thanks go to my students Jens Bohl, Torsten Kunze, Dirk Behrendt, Kumanan Kana-
gasabapathy, Jens Kleinschmidt, Martin Fache, Karsten Tellhelm, Marcel Kiesling, Teodora
Kikova, Dennis Reichenbach, Stefan Zeisler, Michael Simon, Henrik Brandes and Saddia
Malik for contributing their theses, tutorials or source code to the project. Special thanks
to Rolf Holzmiiller who brought in some innovative ideas for CYBOL, in the final phase of
my work, and helped cleaning many bugs in CYBOI.

Reminiscences on good times go to my former colleagues of OWiS Software who, together
with the Technical University of Ilmenau (TUI), have contributed with great commitment
to the development of the Object Technology Workbench (OTW) UML tool which I would
have liked to use in the early stages of my work. Pity it hasn’t gone Open Source after its
development was stopped in 2000 :-(Thanks to Martin Wolf, Rene Preifiel, Dirk Henning

and all colleagues who have been patient and well-explaining teachers!

I would like to acknowledge the contributors of CYBOP [256] and Res Medicinae [266],
especially all medical doctors, e.g. Claudia Neumann and Karsten Hilbert, who supported
the second project with their analysis work [135] and mailing list discussions. Furthermore,
I want to mention Thomas Beale from the OpenEHR project [22] whose freely published
design document (back in 2001) gave me some initial ideas in the early stage of my work. Ac-
knowledged be all these brave Enthusiasts of the Free/ Libre Open Source Software (FLOSS)
community, who have provided me with a great amount of knowledge through a comprising
code base to build on. I shall mention the contributors of FLOSS projects such as Scope
[267], Apache Jakarta [253], JOS [261], JDistro [260], the OpenHealth [168] mailing list
readers, the OSHCA [241] members and all other supporters of our projects and ideals.

Great thanks goes to the Urban und Fischer publishing company, for providing anatomical
images from their Sobotta: Atlas der Anatomie [319] and to the Open Clip Art project [103]
for its wonderful library of free art! Similarly, I have to thank the free online dictionaries of

LEO [72] and the Technical University of Chemnitz [51].

Preface Xxiii

I am grateful to all people who openly publish their knowledge on the web. Without the
numerous free sources, I would have never been able to accomplish this work. Especially in
the state-of-the-art part, I had to heavily rely on existing sources. It is also therefore that
I have decided to put my work under the GNU FDL licence [104]. I would be happy to see
large parts of it copied in Wikipedia [60]!

Let me finish this preface with ARTHUR SCHOPENHAUER’s words:

All truth passes through three stages:
First, it is ridiculed.
Second, it is violently opposed.

Third, it is accepted as being self-evident.

Thank you for reading!

Ilmenau, October 2006 Christian Heller <christian.heller@tuztaz.de>

1 Introduction

Even a Way of a thousand Miles begins with one Step.

SAYING

Information Technology is gaining more and more importance in modern society. Some
people even talk of the Information Age. What FElectricity was for the Industrial Age,

Information is for today’s society.

And Software plays one of the, if not the most important role thereby.

1.1 Information Science

Science is one form in which humans express their aspiration for Perception. It should
— but unfortunately not always does — serve the well-being of people. Similarly, scientific

Inventions usually are to ease human’s life.

The results of many technical inventions are Tools, Machines or Robots (figure 1.1). A
passive tool is a mostly simple device used by humans to carry out a task better. The word
machine is used to describe advanced, active tools which can run by themselves, only driven
by an external force like steam or electrical energy. A robot, finally, is an enhanced machine
which may imitate human behaviour (humanoid) or take over (industrial) tasks that are
too dirty, dangerous, difficult, repetitive or dull for humans [60]. Its parts are often called
Hardware. It does not necessarily have the same shape as the human body but can come
very close. Also, it contains some pieces of rudimentary Intelligence that lets it act alone
(autonomous). The intelligence basically controls the way in which the robot functions what
is sometimes called Workflow or Program. That must be encoded, for example in form of a

Punchcard or pieces of Software, kept as pure text or binary data in some electronic memory

2 1 Introduction

passive

software

—*

hardware [

active

Figure 1.1: Scientific Inventions

or on a storage medium.

A Computer can be seen as handicaped robot that can think but not move. Essentially,
it represents the intelligent parts of a robot and is able to process (compute) Information
(data content of a message [71]). But its hardware is pruned to pure information input and
output. While the importance of robots lies in their Movement actions, it lies in problem
Solving and system Simulation for computers [60]. Software plays the biggest role thereby.

It contains the programs after which a computer is run, after which it acts.

One important area the science of information, called Informatics, deals with is software —
the art of representing and processing information. As such, one of its major aims is to find
Abstract Models which represent the real world best. The better this is done and the better

information can be stored and processed, the better software can assist its human users.

1.2 Software Crisis

An early question in software engineering was how to write programs that control a computer
system’s Hardware correctly and efficiently. Over time, the importance of hardware shifted
in favour of Software which nowadays contains most of the logic needed to run an application

on a computer system. Consequently, much more research emphasis is now placed on the

1.2 Software Crisis 3

finding of clever modelling concepts that help writing correct and effective, stable and robust,
flexible and maintainable, secure software. Another objective is to increase the effectiveness
and lessen the expenditure of cost and time in software development projects, by reusing

(pieces of) software.

The past 40 years have delivered numerous helpful concepts, for instance Structure and
Procedure, Class and Inheritance, Pattern and Framework, Component and Concern, and
many more. They undoubtedly have moved software design far forward. Nevertheless, the
dream of true componentisation and full reusability has not been reached. Czarnecki [66]
identifies problems in the four areas: Reuse, Adaptability (in this work also called Flezibility),

management of Complexity and Performance.

Modern software is very complex. It runs on different hardware platforms, uses multiple
communication paradigms and offers various user interfaces. Many tools and methods assist
experts as well as engineers in creating and maintaining software but do they not seem
sufficient to cope with the complexity so that often, systems still base on buggy source code

causing:

- False Results

- Memory Leaks

- Endless Loops

- Weak Performance

- Security Holes

Are these exclusively the fault of software developers? Or, are the used concepts perhaps
insufficient? Using the same, allegedly unsatisfying concepts caused some people to talk
about an ongoing Software Crisis, sometimes Complexity Crisis, affecting not only high-

level application programming, but also low-level microchip design [67].

However, answers are not easy to find. Software design is Arts and Engineering, at the same
time. Not everything is or can be regulated by rules. It is true, developers have to stick to a
set of design rules — and tools that support their usage exist — but they also have to be very
creative. All the time, they have to have new, innovative ideas and apply them to software.
This is what makes the creation, integration, test and maintenance of software so difficult.

There is not really a uniform way of treating it.

4 1 Introduction

1.3 Motivation

To the issues that this work has with some state-of-the-art solutions belong in particular

three things:

1. Abstraction Gaps in Software Engineering Process (chapter 2)
2. Misleading Tiers in Physical Architecture (chapter 3)

3. Modelling Mistakes in Logical Architecture (chapter 4)

The traversing of abstraction gaps in a software engineering process belongs to the main
difficulties in software development, and causes considerable cost- and time effort. It neces-
sitates a steady synchronisation between domain experts and application system developers,
because their responsibilities cannot be clearly separated and interests often clash. A first
objective of this work is therefore to contribute to closing these gaps, especially the one

existing between a designed system architecture and the implemented source code.

The misinterpretation of the physical tiers in an information technology environment often
leads to wrong-designed software architectures. Logical layers are adapted to physical tiers
(frontend, business logic and backend) and differing patterns are used to implement them.
Instead, systems should be designed in a way that allows the usage of a unified translator
architecture, so to give every application system the capability to communicate universally

by default, which is the second objective of this work.

Several well-known issues exist with the modelling of logical system architectures, for exam-
ple: fragile base class problem, container inheritance, bidirectional dependencies, global data
access. These and others more result from using wrong principles of knowledge abstraction,
like the bundling of attributes and methods in one class, as suggested by object oriented
programming, or the equalising of structural- and meta information in a model. A third
and final aim of this work is therefore to closer investigate the basic principles and concepts
after which current software systems are created, and to search for new ideas and concepts,

with the objective of finding a universal type structure (knowledge schema).

On its search for new ideas, this work intentionally tries to cross the borders to other scientific
disciplines. It can therefore also be called an inter-disciplinary effort. Results from many
different sciences are applied to software engineering. Most emphasis, however, is placed on
the comparison between human- and computer systems. Nature has always been a good

teacher and its principles have often been copied; so does this work.

1.4 Cybernetics 5

1.4 Cybernetics

One scientific subject being inter-disciplinary since its creation is Cybernetics. Its name
stems from the ancient Greek word Kybernetes meaning Steersman and it has many def-
initions [134]. One that was coined in 1948 by Norbert Wiener sees Cybernetics as the
science of information and control, no matter whether it is about living things or machines.
The American Heritage Dictionary of the English Language [251] defines it as the theoret-
ical study of communication and control processes in biological, mechanical, and electronic

systems, especially the comparison of these processes in biological and artificial systems.

The closely related subject of Bionics is a specialisation of cybernetics (Bionics = Bio-
Cybernetics) [73]. It can be defined as the application of biological principles to the study

and design of engineering systems [251].

Other related fields which are not considered further in this work are morphology (structure-
function), general systems theory (complexity, isomorphic relationships), biomechanics (pros-
thetics), biomimetics, robotics and artificial intelligence. However, the results described in

this document might also be of importance in those areas.

Since Software Engineering is a kind of Systems Engineering, the consideration of systems as
a whole gains in importance. Cybernetics as science of observing, comparing and controlling
biological and technical systems is of great importance in the document on hand. Using
models inspired by biology and psychology (but also further disciplines such as philosophy

or physics), the science of Bionics plays an important role, too.

Sticking to the system idea of Wiener and in the fashion of the science of Bionics, this
work and the new concepts described therein are called Cybernetics Oriented Programming

(CYBOP).

1.5 Method

Despite all scientific methodology, research is mostly a journey into the blue. Likewise did
this work not follow a linear way of progression, but rather a zigzag course between theory

and practice (figure 1.2), which may be labelled Constructive Development.

At the beginning, there was the wish to create a software application for use in medicine.
Development started off by using classical programming techniques. Whenever a problem

occured, it was solved by applying yet more up-to-date techniques and latest software design

6 1 Introduction

structure for states and logic
<

“physical dimensions
double-hierarchy knowledge
~ human thinking

universal translator pattern
human communication

system-knowledge separation
body and mind
top-level container

 hierarchical universe

monolithic java application

Figure 1.2: Constructive Development

principles, such as Patterns. This worked out well until the point at which the complexity

of the software could not be handled easily anymore and new ideas were demanded.

It was only when state-of-the-art concepts got more and more unsatisfying and insufficient to
maintain a clear architecture, that new ones had to be found. After some time of reflexion,
the principles of human thinking for abstracting the real world in artificial models could be
identified as source of new ideas for software design. Further ideas were later taken over
from other phenomenons of nature and various scientific disciplines. The obvious similarities
between human- and computer systems (information input, -storage, -processing, -output)

should be rationale enough for an inter-disciplinary approach.

The concepts resulting from both, traditional and new ideas, got finally merged and de-
veloped towards the CYBOP theory (figure 1.3). For this new kind of programming, the
distinction of Statics and Dynamics, a special Knowledge Schema and the separation of

State and Logic are necessary. Chapter 5 will define these in greater detail.

This work reports about the progress of finding new ideas for software design. However,
since problems did not occur in a predictable way, while developing the mentioned applica-
tion, their presentation in order of appearance would be rather confusing. A systematised
structure of sections is therefore used in this work to organise most problems after the pro-

gramming paradigm they belong to. For the interested reader, chapter 11 describes the

1.6 Example 7

traditional
programming

structure
procedure

class cybop
inheritance

statics & dynamics
knowledge schema
state & logic

scientific
disciplines

new
concept
ideas

Figure 1.3: Merger of traditional and new Concepts

stepwise construction and taken design decisions of the prototype anyway.

1.6 Example

In the course of this work, most different solutions, frameworks and models have been
developed, which is why it turns out to be rather difficult to deliver a continuous example

here.

Some traditional concepts and many new ideas of this work are demonstrated on examples
taken from a Medical Information System environment, with focus on the Electronic Health
Record (EHR). This counts for the theoretical models of the first and second part as well
as for the practical examples in part III. Many other examples and models, though, were
picked arbitrarily, depending on their adequacy for demonstrating a corresponding concept

or idea.

The actual application of the CYBOP concepts is described in chapter 11 where a prototype
software project called Res Medicinae gets introduced. It is to validate the new concepts

and to give the proof of their operability.

8 1 Introduction

1.7 Structure

This document is divided into fourteen chapters. Neglecting this introduction, thirteen

chapters remain which are organised in four parts. They are illustrated in figure 1.4.

contribution proof: completion

software statics
engineering & cybol review
process dynamics

summary
cyboi &
future

physical knowledge
architecture schema

logical state res
& . appendices
architecture) medicinae PP
logic

extended
motivation

Figure 1.4: Document Structure

Part I considers basic concepts of software development (State of the Art), before the then
following part II contributes new concept ideas. Practical proof of their operability is given
in part III. And part IV finally completes the work with a review, summary and outlook

into the future.

Software Engineering Processes (SEP) (chapter 2) have to be briefly described to be able
to estimate the effects of abstraction changes on the actual SEP phases. The Physical
Architecture (chapter 3) of a standard Information Technology (IT) environment is neces-
sary background knowledge for later reflections on the design of software systems and their
communication paradigms. Finally, the Logical Architecture (chapter 4), that is conceptual
solutions for structuring software systems, is investigated, to later be able to possibly find

Pros and Cons.

A short Recapitulation of introduced state-of-the-art concepts and the idea of an inter-
disciplinary, cybernetics-oriented approach lead to an FEztended Motivation (chapter 5)

whose results and solutions are described in the remaining parts of the work.

1.7 Structure 9

A first description focuses on the distinction of Statics and Dynamics (chapter 6). In a
second step, a new kind of Knowledge Schema gets introduced (chapter 7). Thirdly, State

and Logic are described as to-be-separated knowledge models (chapter 8).

The application of the merged traditional and new design concepts results in the XML-
based Cybernetics Oriented Language (CYBOL) (chapter 9). A corresponding Cybernetics
Oriented Interpreter (CYBOI) (chapter 10) is needed to execute systems defined in that
language. The Res Medicinae prototype application (chapter 11) is written in CYBOL and
executed by CYBOI.

One might argue that chapters 9 (CYBOL) and 10 (CYBOI) should rather belong to part
II, called Contribution, since they contain newly developed technologies. However, as they
were needed for the practical proof, and in order to keep the chapter symmetry, they were

placed in part III, called Proof.

After a Review validating and evaluating the CYBOP programming philosophy in compar-
ison to the original motivation (chapter 12), a Summary and recommendations for Future
research are given (chapter 13). The Appendices (chapter 14) contain used abbreviations,
references to literature and the usual lists of figures and tables. A glossary was omitted
since this document does not want to be a lexicon. All terms are explained at their first ap-
pearance in the text. A short history of thoughts that lead to the creation of this document
and recommendations for a migration to CYBOL as well as some licences in full text follow.
Caution! The page numbers behind an index entry at the end of this document refer to the

Beginning of the section in which the entry appeared.

Part |

Basics

2 Software Engineering Process

The Way is the Aim.

CONFUCIUS

So