
Implementation of object-in-fluid in ESPResSo

Ivan Cimrák⋆, Markus Gusenbauer†

⋆ Department of Software Technologies, University of Žilina, Slovakia
† St. Poelten University of Applied Sciences, Austria

1 Object-in-fluid in 5 minutes

The following lines are from the official webpage of ESPResSo:

”ESPResSo is a highly versatile software package for performing and

analyzing scientific Molecular Dynamics many-particle simulations of

coarse-grained atomistic or bead-spring models as they are used in soft-

matter research in physics, chemistry and molecular biology. It can be

used to simulate systems such as polymers, liquid crystals, colloids, fer-

rofluids and biological systems, for example DNA and lipid membranes.”

These lines tell the user exactly, what ESPResSo is aimed for. Molecular simu-
lations. Very briefly: given the points in the space, and given the forces between
them (and how they depend on many parameters), ESPResSo can compute how
these points move in space (and much more, of course).

Probably all current simulations using ESPResSo, work with objects (molecules,
atoms, polymers, colloids, crystals, ...) that are physicaly composed of points
linked together with bonds. These objects are like skeletons, without inner or
outer volume.

Our idea is to use ESPResSo for objects that do have inner volme, for exam-
ple red blood cells, magnetic beads, capsules, ... In fact, it is easy: the boundary
of an object (for example a red blood cell) is covered with triangular mesh. The
vertices of the mesh are put into ESPResSo as particles. The edges of the mesh
will define elastic forces keeping the shape of the red blood cell. The movement
of the red blood cell will be achieved by adding forces to the mesh points and
voilá, we have moving object simulated in ESPResSo.

2 Objects in a fluid

Modelling of the flow of a fluid with immersed elastic or rigid objects is a
challenging task. The fluid interacts with an elastic object resulting in its defor-
mation; this imediately generates forces acting back on the fluid. The aim is to
describe the immersed object using the notion of particles, and to create bonds
between these particles representing elastic or rigid forces. Such an object is
put in a Lattice-Boltzman flow.

We consider objects composed of a membrane encapsulating the fluid inside
the object. For now, the inside fluid must have the same density and viscosity
as the outside fluid. (See Section 4.1 with unresolved issues.) The object will be

1

represented by its membrane (boundary) and the membrane will be discretized
using a triangulation. Such a triangulation will define particles distributed on
the surface of the immersed object. Next we define different bonded interactions:

• between two particles, corresponding to the edges in the triangulation
(modelling the stretching of the membrane),

• between three particles, corresponding to the triangles of the triangulation
(local area, or local surface preservation of the membrane),

• between four particles, corresponding to two triangles from the triangula-
tion sharing a common edge (bending of the membrane).

The object immersed in the fluid will move under the influence of the deform-
ing forces, defined through the bonds, and under the influence of the fluid mo-
tion. The fluid-particle interaction is described in the user guide of ESPResSo.
We use the same approach. This interaction is based on the frictional force
between the fluid and the spherical particles. In our case however, we consider
the movement of a larger immersed object and the particles are only a virtual
discretization points on the surface of the object. Therefore the object will move
in the flow only if there is a nonzero difference between the fluid velocity and
the particle velocity. In other words, there has to be at least small flow through
the membrane, which is in most cases unphysical. However, we believe that on
larger scales, this unphysical flow through the membrane is negligible.

Other approach (See Section 4.2 with unresolved issues) is to use the no-slip
condition on the boundary of the immersed object. In this case, the influence
of the fluid on the immersed object is not transferred through the forces, but
through the velocities of the particles on the membrane. This is completely
different approach, however the flexibility of ESPResSo allows for implementing
it. See unresolved issues.

Membranes

With our approach it is easy to model also elastic sheets, or free membranes
that do not necessarily enclose a 3D object. In this case, we do not define
area force global and volume force interactions, since these two interactions are
ment for closed immersed objects.

Parameters

There are several parameters involved in this model. All of them should be
calibrated.

• Mass of the particles. Every particle has its mass and the dynamics is
influenced by this parameter.

• Friction coefficient. The main parameter describing the fluid-particle in-
teraction is the friction parameter from the ESPResSo command lbfluid.

• Parameters of elastic moduli. Elastic behaviour can be described by differ-
ent eleastic moduli. We show five of them: stretching, bending, local and
global area preservation and volume preservation. Each of them has its
own scaling parameter, we denote them ks, kb, kal, kag, kv, respectively.

2

Figure 1: Triangular mesh representing the boundary of a RBC deformed in the
fluid flow.

The mass of the particles and the friction coefficient can be calibrated using the
drag coefficients of the ellipsoidal objects. These drag coefficients have known
analytical values and the mass and friction can be calibrated to fit this values.
More details about the calibration is in [1].

The elastic parameters are specific to the immersed onjects. They correspond
to their physical values. More details about their mechanical and biological
meaning is presented in [2] specifically for red blood cells. However, the proper
calibration to fit the experimental data has been performed in [1].

2.1 Geometry

The membrane of the immersed object is triangulated. In Figure 1 you can see
an example of such triangulation. Triangulation can be obtained using various
software tools. Two files must be available for the tcl script: nodes.dat and
triangles.dat. The parameters of the mesh, such as the number of particles
on the surface of the immersed object are determined from the file nodes.dat

by counting its lines. Also, number of triangles in the mesh is determined by
counting the number of lines in file triangles.dat .

The nodes.dat contains thus nnode lines with three real numbers separated
by blank space, representing three coordinates of the corresponding particle.
The membrane is thus discretized into nnode particles with IDs starting from 0
to nnode-1. The IDs are assigned in the same order as in the nodes.dat file.

The triangles.dat contains ntriangle lines with three nonnegative inte-
gers separated by blank space. Each line represents one triangle in the triangula-
tion. For algorithmic purposes it is crucial to have defined a correct orientation
of the triangle. We define the orientation using the normal vector associated
with the triangle. The important rule is that the normal vector of the triangle
must points inside the immersed object.

As an example, let us have one line in the file mesh-triangles.dat with
numbers 4, 0 and 7. This means that particles with IDs 4, 0 and 7 form one
triangular face of the triangulation. The orientation is defined as follows: create
two vectors v1 and v2, such that v1 is pointing from particle 4 to particle 0, and
v2 is pointing from particle 4 to particle 7. Be carefull, the order of vectors and
particles matters!

The normal vector n is computed as a vector product v1× v2. The direction
of n can be determined by the rule of right hand: the thumb points in the v1
direction, the index finger in the v2 direction and the middle finger in the n

3

direction. Following this principle, all the lines in the triangles.dat file must
be such that the normal vectors of the corresponding triangles must point inside
the immersed object.

These two files are sufficient to describe the geometry and topology of the
triangulation. For the definition of bonded interactions the following geomet-
ric entities are necessary: position of the particles, edges, lengths of the edges,
triangles, areas of triangles, angles between two triangles sharing a common
edge, surface of the immersed object, volume of the immersed object. All
these geometrical entities can be computed using the information from the files
nodes.dat and triangles.dat and the computation is done on the tcl level.
The scripts for this are located in scripts/object-in-fluid.tcl .

The procedure add_oif_object located in file scripts/object-in-fluid.tcl
first reads both mesh files. It generates list of edges, and computes all geo-
metrical entities needed for definition of bonded interactions. It then executes
ESPResSe commands for creation of particles. An example is as follows:

part 0 pos 3.0 3.0 6.0 type 1 mol 1 mass 1

Next it consecutively generates ESPResSo commands for five elastic moduli.
For example, it executes as many ESPResSo commands inter as there are the
edges in the triangulation. Each such command defines one interaction with its
own interaction ID, identificator of the interaction type and parameters defining
the properties of this interaction, e.g.

inter 106 stretching_force 4.6 5.0

Detailed description of the available types of interactions is presented in Section
2.2.

Further, add_oif_object executes commands for creation of actual bonds
between particles. Each of these commands contains one bond definition, e.g.

part 313 bond 10006 293

2.2 Interactions

The following interactions were implemented in order to mimic the mechanics of
biological membranes. Their mathematical formulations have been taken from
[3].

2.2.1 Stretching force

Syntax

| inter bondid stretching force L0

AB ks
Description

This type of interaction is available for closed 3D immersed objects as well as
for 2D sheet flowing in the 3D flow.

For each edge of the mesh, LAB is the current distance between point A and
point B. By L0

AB we denote the distance between these points in the relaxed
state, that is if the edge has the length exactly L0

AB then no forces are added.
∆LAB is the deviation from the relaxed state, that is ∆LAB = LAB − L0

AB.
The stretching force between A and B is computed using

Fs(A,B) = ksκ(λAB)
∆LAB

L0

AB

nAB.

4

Here, nAB is the unit vector pointing from A to B, ks is the stretching constant,
λAB = LAB/L

0

AB, and κ is a nonlinear function that resembles neo-Hookean
behaviour

κ(λAB) =
λ0.5
AB + λ−2.5

AB

λAB + λ−3

AB

.

Figure 2: Stretching force between two points of the mesh surface.

The stretching force acts between two particles and is symmetric. Therefore
if an interaction is defined by

inter 1 stretching_force 2.0 4.0

then the following two commands

part 42 bond 1 43

part 43 bond 1 42

are equivalent.

2.2.2 Bending force

Syntax

| inter bondid bending force θ0 kb

Description

The tendency of an elastic object to maintain the resting shape is governed
by prescribing the prefered angles between the neighbouring triangles of the
mesh. This type of interaction is available for closed 3D immersed objects as
well as for 2D sheet flowing in the 3D flow.

Denote by θ0 the angle between two triangles in the resting shape. For closed
immersed objects, you always have to set the inner angle. The deviation of this
angle ∆θ = θ− θ0 is computed and defines two bending forces for two triangles
A1BC and A2BC

Fbi(AiBC) = kb
∆θ

θ0
nAiBC .

Here, nAiBC is the unit normal vector to the triangleAiBC. The force Fbi(AiBC)
is assigned to the vertex not belonging to the common edge. The opposite force
divided by two is assigned to the two vertices lying on the common edge. This
procedure is done twice, for i = 1 and for i = 2.

Unlike the stretching force the bending force is strictly asymmetric. After
creating an interaction

inter 33 bending_force 0.7 4.0

5

Figure 3: Bending force between two surface triangles.

it is important how the bond is created. Particles need to be mentioned in the
correct order. Command

part 0 bond 33 1 2 3

creates a bond related to the angle between the triangles 012 and 123. In Figure
3, the particle 0 corresponds to point A1, particle 1 to C, particle 2 to B and
particle 3 to A2. There are two rules that need to be fulfilled:

• there has to be an edge between particles 1 and 2

• orientation of the triangle 012 must be correct, that is the normal vector
defined as a vector product 01×02must point to the inside of the immersed
object.

Notice that also concave object can be defined. If θ0 is larger than π, then the
inner angle is concave.

2.2.3 Local area conservation

Syntax

| inter bondid area force local S0

ABC kal

Description

This interaction conserves the area of the triangles in the triangulation. This
type of interaction is available for closed 3D immersed objects as well as for 2D
sheet flowing in the 3D flow.

The deviation of the triangle surface SABC is computed from the triangle
surface in the resting shape ∆SABC = SABC − S0

ABC . The area constraint
assigns the following shrinking/expanding force to every vertex

Fal(A) = −kal
∆SABC

SABC

wA

where kal is the area constraint coefficient, and wA is the unit vector pointing
from the centroid of triangle ABC to the vertex A. Similarly the analogical
forces are assigned to B and C. This interaction is symmetric, therefore after
defining the interaction

6

inter 44 area_force_local 0.02 4.0

the following commands are equivalent

part 0 bond 44 1 2

part 0 bond 44 2 1

part 1 bond 44 0 2

2.2.4 Global area conservation

Syntax

| inter bondid area force global S0 kag

Description

This type of interaction is available solely for closed 3D immersed objects.
The conservation of local area is sometimes too restrictive. We add the

global area constraint. Denote by S the current surface of the immersed object,
by S0 the surface in the relaxed state and define ∆S = S − S0. Then we define
the global area conservation force

Fag(A) = −kag
∆S

S
wA

Here, the above mentioned force divided by 3 is added to all three particles.

Figure 4: Local area force acting on a triangle of the mesh.

Again, this interaction is symmetric, as is the area force local.

2.2.5 Volume conservation

Syntax

| inter bondid volume forcel V 0 kv
Description

This type of interaction is available solely for closed 3D immersed objects.
The deviation of the global volume of the cell V is computed from the volume

in the resting shape ∆V = V − V 0. For each triangle the following force is
computed

Fv(ABC) = −kv
∆V

V 0
SABC nABC

where SABC is the area of triangle ABC, nABC is the normal unit vector of
plane ABC, and kv is the volume constraint coefficient. The volume of one
immersed object is computed from

V =
∑

ABC

SABC nABC · hABC

7

where the sum is computed over all triangles of the mesh and hABC is the normal
vector from the centroid of triangle ABC to any plane which does not cross the
cell. The force Fv(ABC) is equally distributed to all three vertices A,B,C.

Figure 5: Volume force acting on the whole object.

This interaction is again non-symetric. After the definition of the interaction
by

inter 22 volume_force 65.3 3.0

we need to take care about the order of vertices. By the following command we
define the bond

part 0 bond 22 1 2

Triangle 012 must have correct orientation, that is the normal vector defined by
a vector product 01× 02 must point inside the immersed object.

3 Tcl example

To demonstrate the usage of our implementation we show a tcl script. The script
is to large extent self-explanatory. As the immersed object we use tetrahedron
and red blood cell. In the input directory, both triangulations are present.

In the beginning we set basic compulsory ESPResSo parameters, such as
time_step, skin, box_l. Next we define the input directory together with the
names of mesh files.

Command init_objects_in_fluid initialize the inner framework for work-
ing with immersed objects. Next comes the command add_oif_object that
actually creates the object. It takes several parameters. The compulsory pa-
rameters are origin, nodesfile, trianglesfile, type and mol. Optional arguments
are mass, ks, kb, kal, kag, kv, rotate and stretch.

Then we add the fluid to the system by lbfluid command, prepare the vmd
connection and then we run the simulation.

In the main iteration loop we set the velocity of the fluid on the left side to
a constant value. We run the integrate command and repeat the main loop.

general parameters

######################################

whether to view the simulation on VMD

set vmd "y"

integrator settings for the simulation

8

setmd time_step 0.1

setmd skin 0.2

thermostat off

rectangular channel box geometry

setmd box_l 100 20 20

what files to read/generate where

######################################

input files, describe the object shape

set inputdir "input"

change these to one of the example files

currently there are CELL and TETRA

set type [lindex $argv 0]

if {$type == ""} {

set type "TETRA"

}

set fileNodes "$inputdir/${type}mesh-nodes.dat"

set fileTriangles "$inputdir/${type}mesh-triangles.dat"

initialization of the object-in-fluid mechanisms

######################################

init_objects_in_fluid

adding one object in fluid - oif. Some parameters are self-explanatory, some not:

######################################

add_oif_object origin 10 10 10 nodesfile $fileNodes trianglesfile $fileTriangles

stretch 1.0 1.0 1.0 ks 0.05 kb 0.01 kal 0.01 kag 0.01 kv 10.0

type 0 mol 0 rotate 0.0 0.0 0.0 mass 1.3

origin sets the coordinates of the center of the object

stretch the immersed object will be scaled

by these factors in the corresponding directions

nodesfile meshfile for vertices

trianglesfile meshfile for triangles

#

elastic parameters of the object:

ks stretching of the cell

kb bending

kal local area preservation

kag global area preservation

kv volume preservation

#

rotate Rotation by specified angles around

X axis, Y axis and Z axis. Angles given

9

in radians. rotateX=Pi/2 rotates the object

by 90 degrees with the axes of rotation x

such that vector 0,1,0 changes to 0,0,1 and

0,0,1 changes to 0,-1,0

type each immersed object must have

mol different type and mol ID

run it!

######################################

lbfluid grid 1 dens 1.0 visc 1.5 tau 0.1 friction 0.5

if { $vmd == "y" } {

prepare_vmd_connection simEspresso 3000 1

exec sleep 2

imd positions

}

main iteration loop

set cycle 0

while { $cycle<200 } {

puts "$cycle"

if { $vmd == "y"} { imd positions }

setting the constant velocity

of the fluid on the left side of the md_box

for { set i 0 } { $i < 1} { incr i } {

for { set j 0 } { $j < 20 } { incr j } {

for { set k 0 } { $k < 20 } { incr k } {

lbnode $i $j $k set u 0.5 0.0 0.0

}

}

}

integrate 1

incr cycle

}

4 Unresolved issues

4.1 Variable viscosity

It would be great to implement the possibility to chose different density and
viscosity of the fluid. We did some research in this direction, we also impe-
mented an algorithm that can detect for every lbnode wheter it is located inside
an immersed object or not. The implementation however was done for serial

10

computation only, I suppose. It was also not tested yet.

4.2 Different fluid-structure coupling

It is reasonable to try different approach in fluid-structure coupling. The cur-
rently implemented approach using the drag force between the fluid and spheri-
cal particles is in fact unphysical if one consideres movement of larger immersed
object with particles being only a virtual sites on the membrane of that object.
In this case, the immersed object moves only if there is a locally nonzero dif-
ference between the fluid velocity and the particle velocity. In other words, if
there is a nonzero flow of the fluid through the membrane.

Other approach is in using the no-slip condition. Normally, fluid has zero
velocity relative to the boundary. In other words, the local velocity of the fluid
near the interface between fluid and structure is the same as the velocity of the
particles. The interaction between the fluid and the immersed objects is not
done by transfer of the forces but by transfer of the velocities.

It would be good to implement this in espresso and to compare both ap-
proaches.

4.3 Orientation of the triangles

It is possible to include a simple check whether all the triangles in the triangula-
tion have correct orientation. This check can be included in the add_oif_object
procedure.

In some case, also if the triangle files are not given such that every triangle
has good orientation, it is possible to restore good orientation. If we know the
point in space inside the immersed object, from which we can see all the bound-
ary points, then we can automatically verify the orientation of the triangles. It
is thus possible to implement a simple check for this.

References

[1] I. Cimrák, M. Gusenbauer, and T. Schrefl. Modelling and simulation of
processes in microfluidic devices for biomedical applications. Computers an

Mathematics with Applications. Doi:10.1016/j.camwa.2012.01.062.

[2] M. Dao, C.T. Lim, and S. Suresh. Mechanics of the human red blood cell
deformed by optical tweezers. J. Mech. Phys. Solids, 51:2259–2280, 2003.

[3] M.M. Dupin, I. Halliday, C.M. Care, and L. Alboul. Modeling the flow of
dense suspensions of deformable particles in three dimensions. Phys Rev E

Stat Nonlin Soft Matter Phys., 75:066707, 2007.

11

