NYACC C99 Munge Module

Matt Wette
March 2017

Introduction

The sxml parse tree can be used to provide autocoding via the (nyacc lang c99 munge)
module. For example, start with the following C code

typedef const char *string_t;
extern string t cmds[10];

The nyacc output (call it the-tree) for this will be

(trans-unit
(decl (decl-spec-list
(stor-spec (typedef))
(type-qual "const")
(type-spec (fixed-type "char")))
(init-declr-list
(init-declr
(ptr-declr (pointer) (ident "string t")))))
(decl (decl-spec-list
(stor-spec (extern))
(type-spec (typename "string t")))
(init-declr-list
(init-declr
(array-of (ident "cmds") (p-expr (fixed "10")))))))
If we feed the-tree into tree->udict and use assoc-ref to lookup "cmds" we get

(udecl (decl-spec-list
(stor-spec (extern))
(type-spec (typename "string_t")))
(init-declr
(array-of (ident "cmds") (p-expr (fixed "10")))))
Now take this and feed into expand-decl-typerefs to get

(udecl (decl-spec-list
(stor-spec (extern))
(type-qual "const")
(type-spec (fixed-type "char")))
(init-declr
(ptr-declr
(pointer)
(array-of (ident "cmds") (p-expr (fixed "10"))))))
which, when fed through the C99 pretty-printer, generates
extern const char *cmds[10];
Since the NYACC C99 parser captures some comments, these can be preserved in the above
procedure.

The Util2 (or Munge) Module

Declarations must have one of
e declarators
int foo;
e struct or union reference
struct foo;
e cnum value
enum FOO =1 ;

From Util2

(decl (decl-spec-list ...) (init-declr-list (init-declr ...) ...)) has been replaced by (decl (decl-
spec-list ...) (init-declr ...)) ...

declr->ident declr => (ident "name") [Procedure]
Given a declarator, aka init-declr, return the identifier. = This is used by
trans-unit->udict. See also: declr->id-name in body.scm.

c99-trans-unit->udict tree [seed| [#:filter f] => udict [Procedure]
c99-trans-unit->udict/deep tree [seed|=> udict [Procedure]
Turn a C parse tree into a assoc-list of global names and definitions. This will unwrap
init-declr-1list into list of decls w/ init-declr.
BUG: need to add struct and union defn’s: struct foo int x;
how to deal with this

I

lookup ’(struct . "foo"), "struct foo", 777
wanted "struct" -> dict but that is not great
solution: munge-decl => ’(struct . "foo") then filter to generate

("struct" ("foo" . decl) ("bar" . decl) ...)
("union" ("bar" . decl) ("bar" . decl) ...)
("enum" ("" . decl) ("foo" . decl) ("bar" . decl) ...)

So globals could be in udict, udefs or anon-enum.

What about anonymous enums? And enums in general?
Anonmous enum should be expaneded into

If tree is not a pair then seed — or > () —is returned. The filter f is either #t, #f or predicate

procedure of one argument, the include path, to indicate whether it should be included in
the dictionary.

munge-decl decl seed [#:expand-enums #f] => seed [Procedure]
This is a fold iterator to used by tree->udict. It converts the multiple init-declr
items in an init-declr-1list of a decl into an a-list of multiple pairs of name and
udecl trees with a single init-declr and no init-declr-list. That is, a decl of
the form

(decl (decl-spec-list ...)

(init-declr-list (init-declr (... "a")) (init-declr (... "b"))

)] |

is munged into list with elements

("a" . (udecl (decl-spec-list ...) (init-declr (... "a"))))

("b" . (udecl (decl-spec-list ...) (init-declr (... "b"))))
The /deep version will plunge into cpp-includes. Here we generate a dictionary of all
declared items in a file:

(let* ((sx0 (with-input-from-file src-file parse-c))
TODO: add enums because they are globall!!, but this should be user opt

enum ABC = 123 ; => 777
Unexpanded, unnamed enums have keys "enum". Enum, struct and union def’s have
keys (enum . "name"), (struct . "name") and (union . "name), respectively.

munge-comp-decl decl seed [#:expand-enums #H] [Procedure]

This will turn

(comp-decl (decl-spec-list (type-spec "int"))

(comp-decl-list
(comp-declr (ident "a")) (comp-declr (ident "b"))))

into

("a" . (comp-decl (decl-spec-list ...) (comp-declr (ident "a"))))

("b" . (comp-decl (decl-spec-list ...) (comp-declr (ident "b"))))
This is coded to be used with fold-right in order to preserve order in struct and
union field lists.

match-param-decl param-decl seed [#:expand-enums #1] [Procedure]

This will turn

(param-decl (decl-spec-list (type-spec "int"))

(param-declr (ident "a")))

into

("a" . (comp-decl (decl-spec-list ...) (comp-declr (ident "a"))))
This is coded to be used with fold-right in order to preserve order in struct and
union field lists.

gen—-enum-udecl nstr vstr => (udecl ...) [Procedure]
(gen-enum-udecl "ABC" "123")
=>
(udecl (decl-spec-list
(type-spec
(enum-def
(enum-def-list
(enum-defn (ident "ABC") (p-expr (fixed "123")))))))))

udict-ref name [Procedure]
udict-ref-struct name [Procedure]
udict-ref-union name [Procedure]

[|

find-special udecl-alist seed => .. Procedure

NOT DONE
>((struct . ("foo" ...) ...)
(union . ("bar" ...) ...)
(enum . ("bar" ...) ...)
seed)

fixed-width-int-names [Variable]
This is a list of standard integer names (e.g., "uint8_t").

typedef-decl? decl) [Procedure]

splice-declarators orig-declr tdef-declr => [Procedure]
Splice the original declarator into the typedef declarator. This is a helper for
expand-*-typename-ref procecures.

repl-typespec decl-spec-list replacement [Procedure]
This is a helper for expand-decl-typerefs

expand-typerefs udecl udecl-dict [#:keep ()] [Procedure]
Given a declaration or component-declaration, return a udecl with all typenames (not
in keep), struct, union and enum refs expanded. (but enums to int?)

typedef const int (*foo_t) (int a, double b);
extern foo_t fctns[2] ;
=>
extern const int (*fctns[2]) (int a, double b);
Cool. Eh? (but is it done?) What about those w/ no init-declr? Like

struct foo;
struct foo ... ;

canize-enum-def-1list [Procedure]
Fill in constants for all entries of an enum list.

typedef int *x_t;

x_t al[10];

(spec (typename x_t)) (init-declr (array-of 10 (ident a)))

(spec (typedef) (fixed-type "int")) (init-declr (pointer) (ident "x_t"))

=>
(udecl (decl-spec-list (type-spec ...) ... (type-qual "const"))
(init-declr (ptr-declr (pointer ...)
stripdown udecl decl-dict [options|=> decl [Procedure]
1) remove stor-spec
=>
udecl->mspec udecl [Procedure]
udecl->mspec/comm udecl [#:def-comm ""| [Procedure]

Turn a stripped-down unit-declaration into an m-spec. The second version include a
comment. This assumes decls have been run through stripdown.

(decl (decl-spec-list (type-spec "double"))

(init-declr-list (
(comment "state vector")
=>

("x" "state vector" (array-of 10) (float "double")

clean-field-list field-list => flds [Procedure]

Process the tagged field-list element of a struct and remove lone comments. If a field

following a lone comment has no code-comment, the lone comment will be used. For
example,

/* foo */
int x;
will be treated as if it was denereed
int x; /* foo */
(decl (decl-spec-list ...) (init-declr-list (init-declr ...) ...))
=>
((decl (decl-spec-list ...) (init-declr ...))

(decl (decl-spec-list ...) (init-declr ...))
D)

