
A Truly Implementation Independent GUI Development Tool
Martin C. Carlisle

Department of Computer Science
2354 Fairchild Dr., Suite 6K41

US Air Force Academy, CO 80840-6234
(719) 333-3590

carlislem@acm.org

1. ABSTRACT
Over the last few years, graphical user
interface programming has become
increasingly prevalent. Many libraries and
languages have been developed to simplify
this task. Additionally, design tools have
been created that allow the programmer to
“ draw” their desired interface and then
have code automatically generated.
Unfortunately, use of these tools locks the
programmer into a particular
implementation. Even if the tool targets a
multi-platform library (e.g. Tcl/Tk or JVM),
the flexibility of the result is constrained.
We present a truly implementation and
platform independent solution. RAPID
generates Ada code targeted to an object-
oriented set of graphical user interface
specifications with absolutely no
implementation dependent information.
The pattern used to derive these
specifications is an improvement over the
“ Abstract Factory” Pattern, as it allows
both the specification and implementation
to take advantage of inheritance. The user
can then select an implementation (for
example, Tcl/Tk or JVM) at compile time.
RAPID itself is also written using the same
specifications; therefore it requires no
modification to target a new implementation

or to use a new implementation itself.
RAPID is curr ently being used to design the
user interface for a satell ite ground station.
1.1 Keywords
Graphical user interfaces, automatic code generation,
Tcl/Tk, Java, Ada

2. INTRODUCTION
The combination of cheaper computing power and the
introduction of the computer into the household has
brought about a change in the nature of the user
interface of most programs. The use of graphical user
interfaces (GUIs) rather than text-based user interfaces
has become increasingly widespread. Although
graphical user interface programming was originall y
both highly complicated and system dependent, a large
collection of widget libraries and GUI design tools have
been created to simpli fy this task.

GUI design tools allow the user to visually create the
graphical user interface for their programs, usually by
cli cking and dragging out the outline of a widget and
then filli ng in the properties via a dialog. Once the
design is complete, code is automaticall y generated
which creates the user interface. This code usually
targets a particular widget library, which also provides
operations which allow the user to query the status of
the widgets (to read the text in a text entry widget, e.g.)
Unfortunately, many of these tools restrict the user to a
particular platform (e.g. Windows) [1,3].

Some GUI design tools target libraries that have been
implemented across several platforms. While these
tools allow a programmer to use the same generated
source code on many different machines, they still
constrain the user to a particular implementation.
Ideally, we would li ke to be able to separate the design
of the user interface from the selection of an
implementation. RAPID allows the programmer to do
precisely that.

RAPID generates code for an object-oriented set of
graphical user interface specifications that contains no
implementation dependent information. A particular
implementation may be selected at compile time of the
generated source code. Currently, Tcl/Tk and JVM

implementations are provided. RAPID is also
implemented using the same libraries. This means that
not only can the programmer pick an implementation
for the output of the GUI design tool, but also the tool
itself can be easil y targeted to different
implementations.

A new design pattern, the Peer Pattern, allows us to
simpli fy the configuration management of multiple
implementations of the same specification. We describe
the Peer Pattern, a novel solution to the same problem
solved by the Abstract Factory Pattern, in Section 3. In
Section 4, we describe the current functionalit y of
RAPID. We contrast RAPID with prior work in this
area in Section 5. Finall y, we conclude and give
directions for future work.

3. MODERNIZING THE ABSTRACT
FACTORY

 Figure 1: Abstract Factory Pattern class hierarchy

Gamma et al describe the Abstract Factory Pattern,
which is useful for “a user interface toolkit that supports
multiple look-and-feel standards, such as Motif and
Presentation Manager” [6]. ET++ [17] used the same
pattern to achieve portabilit y across different window
systems. In the Abstract Factory Pattern, each user
interface item is defined as an abstract class, and the
various implementations (in this example, Motif and
Presentation Manager) are defined as children of the
abstract class. Then, a factory is defined. The factory
merely call s the appropriate creation methods
depending on which implementation is currently
selected. Matthew Heaney [9] has implemented the
Abstract Factory Pattern in Ada in two ways. The first
is exactly as described by Gamma et al; he also notes
that you can accomplish the Abstract Factory simply by
doing static package renaming. Figure 1 shows the
class hierarchy of the Abstract Factory Pattern obtained
from the SIGAda Patterns web site [9]. The triangular
arrows point from a child class to its parent class. The

dashed lines point from a client to the package whose
objects it instantiated. The solid arrows point from a
client to the packages it utili zes. Although it is not
shown in the diagram, the client would also need to
access AbstractProduct1 and AbstractProduct2 to use
the associated methods.

The problem with the Abstract Factory Pattern becomes
evident when we attempt to extend an abstract product.
For example, suppose we wish to create
AbstractProduct3, which extends the functionalit y of
AbstractProduct2. It is a simple matter to create the
abstract class, by simply extending AbstractProduct2.
When we implement Product31, it is li kely the case that
we would li ke to extend the class Product21.
Unfortunately, Product31 is already a child of
AbstractProduct3. Many important object-oriented
languages (such as Ada and Java) do not allow multiple
inheritance; therefore, we are required to reimplement
the functionalit y of Product21 in Product31.

One solution is to simply dispose of the Abstract
Factory altogether, and implement two separate
hierarchies, making sure that each has the same
methods and class names. The user then selects an
implementation by including the appropriate set of files
in the project (via a makefile, compiler flags, or
similar). This has the disadvantage that multiple copies
of the specifications are created, each differing only in
the representation of the data.

We instead solve the problem by creating the Peer
Pattern. In the Peer Pattern, one hierarchy gives the
specification of the classes. The client sees only this
hierarchy. A second hierarchy actuall y implements the
specification. This is ill ustrated in Figure 2. In Figure
2, the dashed lines leading from the products to the
peers are labeled “depending on compilation selection.”
The reason for this is that while the specifications of the
products are exactly the same across all
implementations, the bodies of these packages are
different. To accomplish this, the root level object of
Product has the following declaration:

type Object is tagged record
 My_Peer : Peer.Peer;
end record;

The peer type can then be defined on an
implementation-specific basis. For the Tcl/Tk
implementation, the Peer contains a string pointer
giving the name of the Tk widget. For the JVM
implementation, it is a classwide pointer to a Java
object. To simpli fy the selection of an implementation

Figure 2: The Peer Pattern class hierarchy

at compilation time for RAPID, we organize the files
into the following directories:

• Mcc_Gui: contains the package
specifications of the “products” , i.e. the
widgets, windows, etc. These are named:
Mcc.Gui, Mcc.Gui.Container, Mcc.Gui.Wi
dget, Mcc.Gui.Widget.Radio_Button, etc.

• Lib: contains package specifications and
bodies that are useful across all
implementations of Mcc_Gui.

• Tcl_Peer: contains both the specification
and body of the package Peer for the
Tcl/Tk implementation. It also contains a
set of package bodies, based on this Peer
package, for the specifications in the
Mcc_Gui directory.

• JVM_Peer: similar to Tcl_Peer, but
instead uses Java components to
implement the Mcc_Gui specifications.

This mechanism totall y separates the specification from
the implementation (since the Mcc_Gui files contain
only a reference to the implementation’s
representation). Additionally, each implementation is
free to create a separate class hierarchy.

The Ada Language Reference Manual [11] specifies
that “each compilation submitted to the compiler is
compiled in the context of an environment.” This
environment contains compilation units. The process

for adding and replacing compilation units is not
specified. In practice, selecting an implementation is
accomplished using either a command line argument
specifying which directories to include, or by directly
adding a li st of the included files to a project file
(perhaps using a file selection dialog). Including the
files from a single Peer directory in the environment
allows the compiler to complete the definition of the
My_Peer field of the Object type.

This solution solves configuration management issues
pertaining to having multiple copies of specifications
that differ only in the private section (where the
representation is stated).

4. RAPID FEATURES
RAPID provides an intuiti ve interface for designing a
graphical user interface. Figure 3 shows the Tcl/Tk
implementation of RAPID window while editing a file.
The first row of buttons is a toolbar. These buttons
allow the user to create a new window, open a previous
window, save the current window, delete or duplicate
the selected widget, start the menu editor, or compile
the GUI to Ada code. The second row of buttons is
used to select what type of widget will be added
(currently text labels, text buttons, picture buttons, and
text entry widgets, check buttons, radio buttons, static
pictures, sliders, progress bars and li stboxes are
supported, and more are being added.) After selecting a
widget type, the designer uses the left mouse button to
cli ck and drag out a new widget. As shown in Figure 3,

a rectangle with an arrow appears as the user cli cks and
drags out the new widget.

Figure 3: The RAPID window after opening a GUI fil e.

Once the user releases the left mouse button, a dialog
box appears that asks the user to fill i n the rest of the
properties of the widget. The location and size of the
widget are automaticall y fill ed in. Figure 4 shows the
dialog for a label widget. The user is asked to give a
name to the widget. This name is used as a variable
name. For a label, the user selects the text that will be
displayed, its justification, and also the foreground and
background colors. Some widgets, such as buttons, also
have actions associated with them. These actions
indicate what should happen when the button is pushed,
the user presses a key in a text entry widget, etc. The
user specifies an action by giving a full y quali fied Ada
procedure name (with package name, e.g.
Actions.Ok_Button).

Additionally, RAPID has a menu-editing tool, whose
visual interface is modeled after a Windows-based file
browser. Arbitraril y nested menus can be created using
this tool. The menu is then displayed in the window
when the menu editor is closed (as shown in Figure 3).
Menu items can also be associated with accelerator keys
by typing the shortcut that will appear in the menu (e.g.
“Ctrl+X”). RAPID then also generates code for the
window that will i nvoke the action associated with the
menu choice when the key sequence is pressed.

The RAPID GUI designer allows the user to generate a
simple graphical user interface without any knowledge
of GUI programming. Once they are pleased with their
design, pushing the compile button will generate all of
the necessary Ada code to display the interface, and
handle all of the events. The designer can then focus
on the functionalit y of the program.

Figure 4: Dialog for entering the properties of a label
widget

5. PREVIOUS WORK
There are several efforts in progress to provide GUI
libraries and design tools for Ada. Both the Aonix GUI
Builder [1] and the CLAW Application Builder [3]
generate Ada code that uses the Win 32 libraries to
implement the user interface widgets. (Note CLAW
claims to be “portable,” but this portabilit y refers to its
abilit y to be used with several compilers, not on several
platforms). This has advantages if you are only
interested in that particular platform (as you can take
advantage of the unique features of the Win 32
libraries), but requires you to entirely redesign your
application’s user interface to port it to a new platform.

Additionally, several projects provide bindings for Ada
to libraries that run on many different machines. First,
TASH [16] provides a thin binding to Tcl/Tk [13].
Tcl/Tk implementations are available on Windows,
Macintosh, Linux and UNIX. Westley is also creating
an object-oriented thick binding to the widgets in the
Tk toolkit. Ada compilers are also beginning to target
the Java Virtual Machine [1, 5]. Using Tcl/Tk to
provide the user interface has a speed advantage for the
code outside the user interface (since it will be compiled
to native machine code) and also makes it easier to
interface with native code, as the Java Native Interface
[15] is quite complex compared to Ada’s interfacing
pragmas. Java [8], however, has a far richer set of
graphics primiti ves available.

GtkAda [2] provides an object-oriented binding to the
Gtk+ toolkit [12]. Additionally, a graphical user

interface designer, GLADE [7], is available for Gtk+.
Gtk+ currently runs on many flavors of UNIX, and a
Windows port is available. The implementation of
Gtk+ is in C, however, the Ada binding cleanly
obscures this from the user. Gtk+ is free software
distributed under the GNU Library General Public
License [10].

This work is a direct extension of previous work on
RAPID [4]. In that work, we targeted only the TASH
binding to Tcl/Tk and did not provide an object-
oriented library of functions for clients to use; however,
we now allow the user to select from multiple
implementations and also provide an object-oriented
interface for clients, which simpli fies using the
generated code.

6. CONCLUSIONS AND FUTURE WORK
In conclusion, RAPID allows an Ada programmer to
add a GUI to his program in a simple and portable way.
The GUI design tool uses an intuiti ve visual process to
create the desired interface. Not only is the user given
portabilit y across several platforms (as both Tcl/Tk and
JVM implementations are provided), but also the user
has the abilit y to use the same design tool with different
implementations.

RAPID is freeware and it will run on a variety of
computers. This will make it an attractive tool for use in
educational settings. At a recent SIGCSE conference, it
was pointed out that CS curricula should address
human-computer interface issues and visual
programming [14]. RAPID will allow students to
experiment both as an implementer and client of
graphical user interface libraries. RAPID is currently
being used to create the user interface for a satellit e
ground station.

The source code for RAPID is available for download
via ftp from the Internet. This provides an opportunity
for others to contribute to the product by adding
additional widgets, additional functionalit y to the
existing widgets, or additional implementations. In
particular, we intend to create an implementation using
GtkAda [2]. We also intend to continue to improve the
product based on our observations from using it, and
input from others. Since RAPID uses the object-
oriented features of Ada 95 in its design, adding
widgets is a straightforward process consisting of
creating a new type and overloading the appropriate
methods.

We have also presented a new solution to the
configuration management problem of having multiple
implementations of a single specification via the Peer
Pattern. This is an improvement over the Abstract

Factory Pattern as it allows both the specification and
the implementation to have separate hierarchies. In the
future, we hope to provide a new pattern that has all of
the functionalit y of the Peer Pattern, while allowing the
program to use multiple implementations
simultaneously.

7. ACKNOWLEDGMENTS
The authors wish to acknowledge W. Blair Watkinson
II , who contributed significantly to the implementation
of the new RAPID code generator. Additionally, the
authors thank the anonymous reviewers, whose
insightful comments improved the final form of this
paper.

8. REFERENCES
[1] Aonix Inc. Object Ada, 1997.

[2] E. Briot, J. Brobecker and A. Charlet. “GtkAda :

an Ada95 binding for Gtk+” ,

http://www.ada.eu.org/gtkada.

[3] R. Brukardt and T. Moran. “CLAW, a High Level,

Portable, Ada 95 Binding for Microsoft Windows,”

Tri-Ada ’97, pp. 91-104, ACM, 1997.

[4] M. Carli sle and P. Maes. “RAPID: A Free,

Portable GUI Designer for Ada,” SIGAda ’98, pp.

158-164, ACM, 1998.

[5] C. Comar, G. Dismukes, and F. Gasperoni.

“Targeting GNAT to the Java Virtual Machine,”

Tri-Ada ’97, pp. 149-161, ACM, 1997.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vli ssides.

Design Patterns: Elements of Reusable Object-

Oriented Software, Addison-Wesley, 1994.

[7] “GLADE: Gtk+ User Interface Builder” ,

http://glade.pn.org.

[8] J. Gosling, B. Joy, and G. Steele. The Java

Language Specifi cation, Addison-Wesley, 1996.

[9] M. Heaney. “Abstract Factory Pattern” and

“Abstract Factory Revisited” , ACM SIGAda

Patterns WG Archive,

http://www.acm.org/sigada/wg/patterns/

 index.html

[10] “GNU Library General Public License” ,

http://www.fsf.org/copyleft/lgpl.html.

[11] Intermetrics. “Ada 95: The Language Reference

Manual and Standard Libraries” , International

Standard ANSI/ISO/IEC-8652:1995.

[12] P. Mattis. “The GIMP Toolkit” ,

http://www.gtk.org/docs/gtk_toc.html.

[13] J. Ousterhout. Tcl and the Tk Toolkit, Addison-

Wesley, 1994.

[14] SIGCSE Town Meeting, Atlanta GA, February

1998.

[15] Sun Microsystems, Inc. Java Native Interface

 Specifi cation http://java.sun.com/products/

jdk/1.1/docs/guide/jni/spec/jniTOC.doc.html, 1997.

[16] T. Westley, “TASH: A Free Platform-Independent

Graphical User Interface Development Toolkit for

Ada,” Tri-Ada ’96, pp. 165-178, ACM, 1996.

[17] A. Weinand, E. Gamma, and R. Marty. “ET++--

An object-oriented application framework in C++.”

In Object-Oriented Programming Systems,

Languages, and Applications Conference

Proceedings, pp. 46-57, ACM, 1988.

