diff --git a/books/bookvol10.1.pamphlet b/books/bookvol10.1.pamphlet index 7721582..6741741 100644 --- a/books/bookvol10.1.pamphlet +++ b/books/bookvol10.1.pamphlet @@ -8477,6 +8477,68 @@ setCurve(C)$P \chapter{Interpolation Formulas} {\center{\includegraphics[scale=0.80]{ps/lozenge2.eps}}} +The lozenge diagram is a device for showing that a large number of +formulas which appear to be different are really all the same. The +notation for the binomial coefficients +\[C(u+k,n) = \frac{(u+k)(u+k-1)(u+k-2)\cdots{}(u+k-n+1)}{n!}\] +There are $n$ factors in the numerator and $n$ in the denominator. +Viewed as a function of $u$, $C(u+k,n)$ is a polynomial of degree $n$. + +The figure above, Hamming \cite{Ham62} +calls a lozenge diagram. A line starting at +a point on the left edge and following some path across the page +defines an interpolation formula if the following rules are used. +\begin{itemize} +\item[{\bf 1a}] For a left-to-right step, {\sl add} +\item[{\bf 1b}] For a right-to-left, {\sl subtract} +\item[{\bf 2a}] If the {\sl slope} of the step is {\sl positive}, +use the product of the difference crossed times the factor +immediately {\sl below}. +\item[{\bf 2b}] If the {\sl slope} of the step is {\sl negative}, +use the product of the difference crossed times the factor +immediately {\sl above} +\item[{\bf 3a}] If the step is {\sl horizontal} and passes through a +{\sl difference}, use the product of the difference times the +{\sl average} of the factors {\sl above} and {\sl below}. +\item[{\bf 3b}] If the step is {\sl horizontal} and passes through a +{\sl factor}, use the product of the factor times the {\sl average} +of the differences {\sl above} and {\sl below}. +\end{itemize} + +As an example of rules {\bf 1a} and {\bf 2a}, consider starting at +$y(0)$ and going down to the right. We get, term by term, +\[y(u)=y(0)+C(u,1)\Delta{}y(0)+C(u,2)\Delta^2y(0)+C(u,3)\Delta^3y(0)+\cdots\] +\[=y(0)+u\Delta{}y(0)+\frac{u(u-1)}{2}\Delta^2y(0)+ +\frac{u(u-1)(y-2)}{3!}\Delta^3y(0)+\cdots\] +which is Newton's formula. + +Had we gone up and to the right, we would have used {\bf 1a} and {\bf 2a} +to get Newton's backward formula: +\[y(u)=y(0)+C(u,1)\Delta{}y(-1)+C(u+1,2)\Delta^2y(-2)+ +C(u+2,3)\Delta^3y(-3)+\cdots\] +\[=y(0)+u\Delta{}y(-1)+\frac{(u+1)u}{2}\Delta^2y(-2)+ +\frac{(u+2)(u+1)u}{3!}\Delta^3y(-3)+\cdots\] + +To get Stirling's formula, we start at $y(0)$ and go horizontally to +the right, using rules {\bf 3a} and {\bf 3b}: +\[y(u)=y(0) ++u\frac{\Delta{}y_0+\Delta{}y_{-1}}{2} ++\frac{C(u+1,2)+C(u,2)}{2}\Delta^2y_{-1}\\ ++C(u+1,3)\frac{\Delta^3y_{-2}+\Delta^3y_{-1}}{2}+\cdots\] +\[=y_0+u\frac{\Delta{}y_0+\Delta{}y_{-1}}{2} ++\frac{u^2}{2}\Delta^2{}y_{-1} ++\frac{u(u^2-1)}{3!}\frac{\Delta^3y_{-2}+\Delta^3y_{-1}}{2}+\cdots\] + +If we start midway between $y(0)$ and $y(1)$, we get Bessel's formula: +\[y(u)=1\frac{y_0+y_1}{2}+\frac{C(u,1)+C(u-1,1)}{2}\Delta{}y_0 ++C(u,2)\frac{\Delta^2y_{-1}+\Delta^2y_0}{2}+\cdots\] +\[=\frac{y_0+y_1}{2}+(u-\frac{1}{2})\Delta{}y_0+ +\frac{u(u-1)}{2}\frac{\Delta^2y_{-1}+\Delta^2y_0}{2}+\cdots\] + +If we zigzag properly, we can get Gauss' formula for interpolation: +\[y(u)=y_0+u\Delta{}y_0+\frac{u(u-1)}{2}\Delta^2y(-1)+ +\frac{u(u^2-1)}{3!}\Delta^3y(-1)+\cdots\] + \chapter{Groebner Basis} Groebner Basis \chapter{Greatest Common Divisor} @@ -8564,11 +8626,21 @@ Lecture Notes in Computer Science, vol. 948, 1995, pp. 262--278. Th\'ese de doctorat de l'Universit\'e Pierre et Marie Curie (Paris 6), Septembre 1996. +\bibitem[Hamming 62]{Ham62} Hamming R W.\\ +``Numerical Methods for Scientists and Engineers''\\ +Dover (1973) ISBN 0-486-65241-6 + \bibitem[Hermite 1872]{Her1872} Hermite, E.\\ ``Sur l'int\'{e}gration des fractions rationelles.''\\ {\sl Nouvelles Annales de Math\'{e}matiques} ($2^{eme}$ s\'{e}rie), 11:145-148, 1872 +\bibitem[van Hoeij 94]{vH94} van Hoeij, M.\\ +``An algorithm for computing an integral basis in an algebraic +function field''\\ +Journal of Symbolic Computation, 18(4) pp353-363 Oct. 1994 +CODEN JSYCEH ISSN 0747-7171 + \bibitem[Le Brigand 88]{LR88} Le Brigand, D.; Risler, J.J.\\ ``Algorithme de Brill-Noether et codes de Goppa''\\ Bull. Soc. Math. France, vol. 116, 1988, pp. 231--253. @@ -8648,12 +8720,6 @@ In {Proceedings of SYMSAC'76} pages 219-226, 1976 ``On the integration of algebraic functions''\\ PhD thesis, MIT, Computer Science, 1984 -\bibitem[van Hoeij 94]{vH94} van Hoeij, M.\\ -``An algorithm for computing an integral basis in an algebraic -function field''\\ -Journal of Symbolic Computation, 18(4) pp353-363 Oct. 1994 -CODEN JSYCEH ISSN 0747-7171 - \bibitem[Lambov 06]{Lambov06} Lambov, Branimir\\ ``Interval Arithmetic Using SSE-2''\\ in Lecture Notes in Computer Science, Springer ISBN 978-3-540-85520-0 diff --git a/books/bookvolbib.pamphlet b/books/bookvolbib.pamphlet index fd5d673..9e58092 100644 --- a/books/bookvolbib.pamphlet +++ b/books/bookvolbib.pamphlet @@ -2854,10 +2854,6 @@ ACM Signum Newsletter. 20, 3 2--25. (1985) ``Monte-Carlo Methods''\\ Methuen. (1967) -\bibitem[Hamming 62]{Ham62} Hamming R W.\\ -``Numerical Methods for Scientists and Engineers''\\ -McGraw-Hill. (1962) - \bibitem[Hathway 1896]{Ha1896} Hathway, Arthur S.\\ ``A Primer Of Quaternions''\\ (1896) @@ -4414,7 +4410,7 @@ techniques for implementing these changes. in Lecture Notes in Computer Science, Springer ISBN 978-3-540-85520-0 (2006) pp102-113 -\subsection{Numeric Tests} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\subsection{Numerics} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \bibitem[Lef\'evre 06]{Lef06} Lef\'evre, Vincent; Stehl\'e, Damien; Zimmermann, Paul\\ @@ -4438,6 +4434,10 @@ format and allows the design of reasonably fast routines that will evaluate these functions with correct rounding, at least in some situations. \end{adjustwidth} +\bibitem[Hamming 62]{Ham62} Hamming R W.\\ +``Numerical Methods for Scientists and Engineers''\\ +Dover (1973) ISBN 0-486-65241-6 + \subsection{Advanced Documentation} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \bibitem [Bostock 14]{Bos14} Bostock, Mike\\ diff --git a/changelog b/changelog index df21370..86828d5 100644 --- a/changelog +++ b/changelog @@ -1,3 +1,6 @@ +20140723 tpd src/axiom-website/patches.html 20140723.01.tpd.patch +20140723 tpd books/bookvol10.1 expand section on interpolation formulas +20140723 tpd books/bookvolbib update reference for Ham62 20140722 tpd src/axiom-website/patches.html 20140722.01.tpd.patch 20140722 tpd books/bookvol10.1 add section on interpolation formulas 20140722 tpd books/ps/lozenge2.eps add the Hamming lozenge diagram diff --git a/patch b/patch index c155c37..4ccdbe9 100644 --- a/patch +++ b/patch @@ -1,3 +1,3 @@ -books/bookvol10.1 add section on interpolation formulas +books/bookvol10.1, bookvolbib expand section on interpolation formulas Show a common structure for constructing interpolation formulas. diff --git a/src/axiom-website/patches.html b/src/axiom-website/patches.html index bfc7fd4..664174d 100644 --- a/src/axiom-website/patches.html +++ b/src/axiom-website/patches.html @@ -4558,6 +4558,8 @@ books/bookvol10.1, bookvolbib, bookheader.tex clean up mistakes books/bookvol7, bookvol8 apply Camm's patches 20140722.01.tpd.patch books/bookvol10.1 add section on interpolation formulas +20140723.01.tpd.patch +books/bookvol10.1 expand section on interpolation formulas