
Tutorial 1: Lennard-Jones Liquid∗

ESPResSo Basics

H.-J. Limbach M. Süzen K. Grass M. Sega
A. Arnold N. Gribova

October 9, 2012

Contents

1 Introduction 2

2 Background 2

3 Tutorial Outline 2

4 First steps 3

5 Short TCL Tutorial 4
5.1 Assignments and evaluation . 4

5.2 Comparisons and looping . 5

5.3 Lists . 6

∗For ESPResSo 3.1.1

1

6 Adding a new Tcl command 7
6.1 Writing to a file . 7
6.2 System setup . 8
6.3 Lennard-Jones Potential . 8
6.4 Units . 9
6.5 Simulation Parameters . 9
6.6 Assigning Particle Properties . 10
6.7 Assigning Interactions . 10
6.8 Generating Data: Lennard-Jones Liquid Simulation 10

6.8.1 System Setup . 11
6.9 Simple Error Analysis on Time Series Data with uwerr 19
6.10 Other Useful Scripts . 21

1 Introduction

Welcome to the basic ESPResSo tutorial!
In this tutorial, you will learn, how to use the ESPResSo package for your research.

We will cover the basics of ESPResSo, i.e. how to set up and modify a physical system,
how to run a simulation, and how to load, save and analyse the data.

The more advanced features and algorithms available in the ESPResSo package will
be described in additional tutorials in the future.

2 Background

Today’s research on Soft Condensed Matter has brought the needs for having a flexible,
extensible, reliable and efficient (parallel) molecular simulation package. For this reason
ESPResSo (Extensible Simulation Package for Research on Soft matter) [1] has been
developed in Max Planck Institute for Polymer Research, Mainz by the Group of PD Dr.
Christian Holm [2]. The Espresso package is probably the most flexible and extensible
simulation package in the market. It is specially developed for coarse-grained molecular
dynamics (MD) simulation of polyelectrolytes but not necessarily limited to this. It can
be used even in simulating granular media for example. ESPResSo has been nominated
for the Heinz-Billing-Preis for Scientific Computing in 2003 [3].

3 Tutorial Outline

In this short tutorial, you will be introduced to the ESPResSo package as smooth as
possible with a minimal set of skills. We will guide you through the initial steps of
working with ESPResSo and help you to examine a simple physical system, a Lennard-
Jones liquid.

After a brief introduction to ESPResSo in Section 4, we provide you with a short
tutorial to the Tcl programming language which is used to control simulations using
ESPResSo in Section 5. In Section 6.2, we will introduce you to the problem system

2

studied in this tutorial and familiarise you with the necessary background knowledge.
Please note, however, that it is beyond the scope of this tutorial to give a complete
overview of the the area. We give a few references that can give you more detailed
information regarding MD.

4 First steps

What is ESPResSo? It is not a coffee, indeed. It is an extensible, efficient Molecular Dy-
namics package specially powerful on simulating charged systems. In depth information
about the package can be found in the relevant sources [1, 3] and a recent paper [2].

From the users point of view, ESPResSo is driven by Tcl(/TK)1 [4], that the user
can interact with the package core via command line interface (CLI) or scripts by using
Tcl scripting language2. In a given ESPResSo script, some commands are interpreted
by the scripting language (Tcl), while others by the core ESPResSo program written in
C. However, all ESPResSo commands and directives in the script are transparent to the
user, regardless of ifs implementation either on the C- or Tcl-level.

Note: This tutorial assumes that you already have a working ESPResSo installation
on your system. If this is not the case, please go to http://www.espresso.mpg.de/ for
information on how to obtain and install ESPResSo.

Task 1 To start ESPResSo, simply type Espresso in the command line shell. This
will open the Command Line Interface (CLI) of ESPResSo. Upon issuing the
ESPResSo command code info you can see the options that are included in your
ESPResSo binarya.

aESPResSo provides many different features, some which are mutually exclusive. This is why not
all features are activated by default, but instead have to be explicitly requested at compile time
of the executable. Please consult the user’s guide for details on this.

Task 2 Figure 1 shows the terminal output you should have obtained. What kind
of output are you receiving from code info command?

On the screenshot you can see several incompiled features, i.e. the fake multiprocessing
interface, the fast fourier transformation, the Lennard Jones and electrostatic potential.
All features can be found explained in the ESPResSo User Guide.

1Tool command language
2In short, a scripting language allows the user to write instructions that are carried out by an interpreter

without prior compiling. This enables the user to use ESPResSo for vastly different applications
without the need of different specialised executable files.

3

Figure 1: Example output of the ESPResSo Command Line Interface upon issuing the
code info command.

5 Short TCL Tutorial

Tcl (Tool Command Language) is a very powerful but easy to learn programming lan-
guage. 3 Aside from writing any valid Tcl code, the user can write any valid ESPResSo
command on the ESPResSo CLI. Here we will review the basic Tcl tutorial [5] in Espresso
CLI. Now type Espresso. Once in the CLI, you can familiarise yourself with the basics
of TCL.

5.1 Assignments and evaluation

A simple text output, or a print statement can be carried out with puts 4

puts ” He l lo Espresso \n”
puts ” This i s l i n e 1” ; puts ” t h i s i s l i n e 2”

In order to declare a variable and/or assign a value to it, you use the assignment com-
mand, called set.

set X ” This i s a s t r i n g ”

3It is dynamically interpreted, which means that commands are read, interpreted, and executed by the
computer one command line at a time.

4Valid TCL / ESPResSo commands are bold and blue, all following code can be direct used with
ESPResSo.

4

set Y 1 .24
puts $X
puts $Y

When assigning a value to a variable, the variable is accessed simply by its variable name
(as in the first line, X). When a value is accessed, the variable name is preceded by a
dollar sign (as in the third line, $X)

C-like backslash sequences can be used along put. For example, \t puts a tab, \r puts a
line return and \n puts a carriage return. Comments are placed using a hash (#) sign.

set X 1 . 2 ; # t h i s i s a comment
set Y 2 . 1 ; # another comment
puts ”\ t tab \ t another tab \n X=$X and Y=$Y ”

To evaluate the result of mathematical expressions you can use the expr command.
Note, that the entire statement is enclosed in square brackets.

set X 60
set Y 30
set Z [expr $X+$Y]
puts ” X=$X and Y=$Y and X+Y=$Z”
set cosX [expr cos ($X)]
puts ” cos ($X) = $cosX”

Most C-like operators and math functions are valid TCL syntax.

5.2 Comparisons and looping

Syntax of numeric comparison is as follows

set x 5
i f {$x == 5} {puts ”$x i s 5”} else {puts ”$x i s not 5”}

You may also write this in different lines by using backslashes. As in many shell scripting
languages such as Tcl, the backslash is used for line continuation only in the Espresso
CLI, not when running a loaded script. However, there is one exception: even in a
script, Tcl expects all parameters of a function, including flow control commands such
as if or while, on the same line. Here you need continuation backslashes even in a
script. However, a block with in curled braces, which is the most common in Tcl, does
not require backslashes for continuation inside. Therefore, in a script, the above code
might look like this:

set x 5
i f {$x == 5} {

puts ”$x i s 5”
} else {

puts ”$x i s not 5”
}

5

but still, you need the backslashes in this style:

set x 5
i f {$x == 5} \
{ puts ”$x i s 5” } \

else \
{ puts ”$x i s not 5” }

You can loop with standard for or while constructs. For example finding 10! with
the for construct:

set f a c t o r i a l 1 . 0
for { set i 1} { $ i <11} { incr i } \
{ set f a c t o r i a l [expr $ f a c t o r i a l ∗ $ i]}

puts ” 10 ! i s $ f a c t o r i a l ”

Or with a while construct

set f a c t o r i a l 1 . 0
set i 1
while { $ i <11} { set f a c t o r i a l [expr $ f a c t o r i a l ∗ $ i] ; incr i }
puts ” 10 ! i s $ f a c t o r i a l ”

5.3 Lists

An ordered collection of entities can be assigned to a variable that makes it a list 5.
This is the basic data structure in TCL. Lists can be set similar to variables. To access
the list data one can use lindex by using corresponding index value. Remember that in
TCL the list indices start with 0 like in other scripting/programming languages .

set x ”1 2 3”
puts ” f i r s t element i s [l i ndex $x 0] ”
puts ” second element i s [l i ndex $x 1] ”
puts ”and the l a s t [l i ndex $x 2] ”

One can access all the elements by using foreach looping consruct as well

set i 0 foreach j $x {\
puts ” $ j i s item number $ i in l i s t x” ; incr i }

Also we can access list of lists

set y ”{ l 00 l 01 } { l 10 l 11 } { l 20 l 21 }”
puts ” f i r s t element o f second l i s t i s [l i ndex $y 1 0] ”
puts ” second element o f th i rd l i s t i s [l i ndex $y 2 1] ”

5This is similar - but not entirely equivalent - to arrays in computer languages such as C or C++.

6

We can also find the length of a list by llength, append an element by lappend and
inserting an element by linsert:

set x ”1 2 3 4” ; # generate a l i s t x
llength $x ; # get the s ize o f l i s t x (number o f e lements)
lappend x 5 ; # add a new member end o f l i s t
puts ”x i s {$x}” ; # pr i n t l i s t again
set $x [l insert $x 3 3a] ; # i n s e r t an element ”3a” at index 3
puts ”x i s {$x}” ; # pr i n t l i s t again

6 Adding a new Tcl command

In Tcl there is actually no distinction between commands (often known as ’functions’ in
other languages) and ”syntax” [5]

proc sum { arg1 arg2 } { \
set x [expr { $arg1 + $arg2 }] ; \
return $x \
}
sum 1 4
puts [sum 1 4]

6.1 Writing to a file

It is useful to write the data into a file. For example

set f i l e h a n d l e [open ” f i l e . d a t ” ”w”] ;
open a f i l e c a l l e d f i l e . d a t to wr i t e
and f i l e channel i s $ f i l e h a n d l e

puts $ f i l e h a n d l e ” This w i l l go in to f i l e ! ”
for { set i 0} { $ i <10} { incr i } { \

puts $ f i l e h a n d l e ” count ing $ i ” }

close $ f i l e h a n d l e ; # close f i l e channel
set f i l e c o n t e n t [exec cat f i l e . d a t] ;

exec runs s h e l l commands
puts ” $ f i l e c o n t e n t ”
exec rm f i l e . d a t ; # remove the f i l e

For further and advanced language details please consult with official Tcl documentation
[4].
So far, we have been typing all the commands line by line in the CLI. In practice,
these lines are actually written in one text file, whose filename is usually ending with
the extension tcl. The commands in that text file are then executed from the Linux
command line with the command Espresso filename.tcl.

7

Task 3 Write a Tcl procedure (custom Tcl command) to compute an arithmetic
average

x̄ =
1

N

N∑
i=1

xi

out of given list of real numbers respectively. Use rand() command to produce ar-
bitrary number of real numbers between 0 and 1 to test your new command. Write
your code into a file called task1.tcl and run as follows: Espresso task1.tcl. Check
your result with smaller data set that you can verify the correctness manually.

Sample solution:

1. Define the new function and set the counting and result variables:

1 proc xsquare { arg1 } {
2 set r e s 0
3 set i 0

2. Sum up the given values and printout the sum:

4 foreach j $arg1 { set r e s [expr $ j+$re s] ; incr i } ;
5 puts $ r e s ;

3. count the elements, divide the sum an return the value:

6 set lang [llength $arg1]
7 set r e s [expr { $ r e s / $lang }] ;
8 return $ r e s ; }

4. to call your function with an array $x:

9 set y [xsquare $x] ;
10 puts $y ;

6.2 System setup

An Espresso script is a tcl simulation script that drives the C-core of the package.
It contains commands native to Tcl - like those we have already learned - plus special
ESPResSo commands that execute procedures specific to MD calculations. In this section
we will review some very basic commands that will help you to understand the sample
introductory script. An actual script used for research is usually more complicated.

6.3 Lennard-Jones Potential

A pair of neutral atoms or molecules is subject to two distinct forces in the limit of
large separation and small separation: an attractive force at long ranges (van der Waals

8

force, or dispersion force) and a repulsive force at short ranges (the result of overlapping
electron orbitals, referred to as Pauli repulsion from Pauli exclusion principle). The
Lennard-Jones potential (also referred to as the L-J potential, 6-12 potential or, less
commonly, 12-6 potential) is a simple mathematical model that represents this behavior.
It was proposed in 1924 by John Lennard-Jones. The L-J potential is of the form
V (r) = 4ε[(σr)12 − (σr)6] where ε is the depth of the potential well and σ is the (finite)
distance at which the inter particle potential is zero and r is the distance between the
particles. The (1r)12 term describes repulsion and the (1r)6 term describes attraction.
The Lennard-Jones potential is an approximation. The form of the repulsion term
has no theoretical justification; the repulsion force should depend exponentially on the
distance, but the repulsion term of the L-J formula is more convenient due to the ease
and efficiency of computing r12 as the square of r6.

6.4 Units

Novice users must understand that Espresso has no fixed unit system. The unit system
is set by user. Conventionally, reduced units are employed, in other words LJ units. 6

6.5 Simulation Parameters

There are global parameters of the simulation system. Some of them are dynamic, that
is to say we can change on the fly, others are read only7. One important ESPResSo
command to address these parameters is setmd

setmd t ime s t ep 0 .001 ; # t h i s s e t s i n t e g ra to r ’ s
time s tep to 0 .00

setmd box length 100 . 0 100 . 0 100 . 0 ;
t h i s s e t s cub ic box L =100

set n u m b e r o f p a r t i c l e s [setmd max part] ;
reads the number o f p a r t i c l e s

ESPResSo needs to know which integrator to use for dynamics. One can use NVE
(particle Number, Velocity, Energy) or NVT (particle Number, Velocity, Tempera-
ture)(Langevin) as well as NPT-isotropic (particle Number, Pressure, Temperature)
ensembles. Some examples how to use the thermostats

thermostat o f f

This implies to use NVE ensemble

thermostat l angev in 1 . 0 0 . 5

Use a langevin thermostat (NVT ensemble) with temperature set to 1.0 and damping
coefficient to 0.5
6If we have charges there is additionally a concept of Bjerrum length, consult Espresso original paper

for more details.
7For more information on read-only variables consult the user’s guide.

9

6.6 Assigning Particle Properties

The power of the ESPResSo package lies in the flexible manipulation of particle data.
Particles can be manipulated by the part command which recognises the unique particle
id. Each particle must be a member of a group which is called type. Interactions among
those types can be defined through type number with inter command. 8 For example
to place a particle id 0 and type 0 at given position (x, y, z)

part 0 pos $x $y $z type 0

it is also possible to read the information on the given particle

part 0 p r i n t pos

which returns position vector of particle id 0.9

6.7 Assigning Interactions

LJ interaction among type 0 particles can be defined as follows

set l j 1 e p s 1 . 0
set l j 1 s i g 1 . 0
set l j 1 c u t 1 .12246
set l j 1 s h i f t 0 . 0
set l j 1 o f f s e t 0 . 0
inter 0 0 lennard− jones $ l j 1 e p s $ l j 1 s i g $ l j 1 c u t $ l j 1 s h i f t

$ l j 1 o f f s e t

This 10 setting corresponds to following potential form

U(r) = 4ε

[(
σ

r − offset

)12

−
(

σ

r − offset

)6

+ shift

]

6.8 Generating Data: Lennard-Jones Liquid Simulation

After we have shortly explained how you can use ESPResSo, we now come to the
Lennard-Jones Liquid Simulation. Before we explain the script step by step, run the
lj tutorial.tcl with ESPResSo to get all generated files.

We include necessary functions with source lj functions.tcl by using the external
lj functions.tcl file and print out the incompiled features of ESPResSo

8Note that, In most electrostatic algorithms, one does not need a type id for interaction specification.
9Note, that the words pos, type, and print are not variables but directives to the part command. See

the ESPResSo user’s guide for more details.
10As in the previous example, the word lennard-jones is not a variable but a directive of the command

inter.

10

1 source l j f u n c t i o n s . t c l
2 puts ””
3 puts ”========================”
4 puts ” = l j l i q u i d t u t o r i a l . t c l = ”
5 puts ”========================”
6 puts ””
7 puts ” Espresso Code Base : \n [c o d e i n f o]\n”
8 c e l l s y s t e m domain decomposit ion −n o v e r l e t l i s t

6.8.1 System Setup

At first, we must configure the environment and set the needed parameters.

9 # System i d e n t i f i c a t i o n :
10 set name ” l j l i q u i d ”
11 set i dent ” s1 ”
12

13 # System parameters
14 #################
15 # we s e t 108 p a r t i c l e s in our system
16

17 set n part 108
18

19 # I n t e r a c t i o n parameters
20 ####################
21 # we must s e t our lennard− jones i n t e r a c t i o n parameters
22

23 set l j 1 e p s 1 . 0
24 set l j 1 s i g 1 . 0
25 set l j 1 c u t 2 . 5
26 set l j 1 s h i f t [expr −(pow(1 . 0 / $ l j 1 c u t , 1 2)−pow(1 . 0 / $ l j 1 c u t , 6))]
27 set l j 1 o f f s e t 0 . 0
28

29 # I n t e g r a t i o n parameters
30 ####################
31 # we need some in format ion about our system
32

33 thermostat o f f ; # Simulat ion in NVE Ensemble
34

35 setmd t ime s t ep 0 .001
36 set e q t s t e p 0 .0001
37 set t s t ep 0 .001
38 set sk in 0 . 1
39 setmd sk in $sk in
40 set ta rge t t empera ture 0 .728
41

42 # we need some warmup in format ion
43

44 set warm steps 100

11

45 set warm n times 2000
46

47 # do the warmup u n t i l the p a r t i c l e s have
48 # at l e a s t the d i s t a n c e m i n d i s t
49

50 set min d i s t 0 . 87
51

52 # some parameters f o r the i n t e g r a t i o n s e l f
53

54 set s a m p l i n g i n t e r v a l 1000
55 set e q u i l i b r a t i o n i n t e r v a l 1000
56

57 set s a m p l i n g i t e r a t i o n s 200
58 set e q u i l i b r a t i o n i t e r a t i o n s 200
59

60

61 # Other parameters
62 ###############
63

64 set t c l p r e c i s i o n 8
65 #s e t t i n g a seed f o r the random number genera tor
66 expr srand ([pid])

As a second step we initialise the particles and interactions in our system.

67 # P a r t i c l e se tup
68 #############
69

70 set dens i ty 0 .8442 # we need the dens i ty o f the p a r t i c l e s
71

72 # now we se tup the p a r t i c l e box
73 set box length [expr pow($n part / $ d e n s i t y , 1 . 0 /3 . 0)+2∗$sk in]
74 puts ” dens i ty = $dens i ty box length = $box length ”
75 setmd box $box length $box length $box length
76

77 # we s e t p a r t i c l e s on random p l a c e s w i t h i n the Box
78 for { set i 0} { $ i < $n part } { incr i } {
79 set pos x [expr rand () ∗$box length]
80 set pos y [expr rand () ∗$box length]
81 set pos z [expr rand () ∗$box length]
82 part $ i pos $pos x $pos y $pos z q 0 . 0 type 0
83 }
84

85 # w r i t e i n i t i a l p a r t i c l e data to f i l e
86 writepdb data / con f i g .pdb
87

88 # I n t e r a c t i o n se tup
89 ###############
90 # we se tup the lennard− jones p o t e n t i a l
91 # as the only i n t e r a c t i o n between the p a r t i c l e s

12

92

93 inter 0 0 lennard− jones $ l j 1 e p s $ l j 1 s i g $ l j 1 c u t $ l j 1 s h i f t
$ l j 1 o f f s e t

Task 4 Study the file lj tutorial.tcl. This system mimics the case study 4
of section 4, in the book [6]. How can one define truncated-shifted potential in
lj tutorial.tcl? (keep in mind that Espresso has already a factor of 4 at shifted
part with cut off rc = 2.5)

U(r) = 4ε

[(σ
r

)12
−
(σ
r

)6]

U(r)tr-sh =

{
U(r)− U(rc) rc > r
0 rc < r

(To find the solution look at line 26. Look at picture 2 to see a plot of the potential
)

0 0,4 0,8 1,2 1,6 2 2,4 2,8 3,2 3,6 4 4,4

-0,8

0,8

1,6

2,4

U(r)-U(rc)

U(r)

U(r)

d/dx U(r)

Figure 2: Lennard Jones Potential with ε = 1 and radius σ = 1. If you use a large cutoff
such as 2.5σ, the potential is practically zero at the cutoff. The red curve
indicates the Weeks-Chandler-Andersen potential, which is obtained from the
Lennard-Jones potential by cutting it off in its minimum at rc = 6

√
2 and

shifting it up.

The writepdb command writes the atomic configuration in the PDB (Brookhaven Pro-

13

tein DataBase) format to the given file. This standard formatted file can easily be
imported to standard applications like VMD.

As it was said in 6.6 we had to set up the interactions between all groups separately.
After we have set the necessary environment we must warmup our system before we run
the simulation. We set particles at random positions so some particles can overlap. In
this situation ESPResSo will crash with an error: particle out of range. To take particles
apart we cap forces by setting the Lennard-Jones force constant below a certain distance.
Therefore we use the inter ljforcecap command. We do the procedure $warm_n_times

times for $warm_steps steps and stop only if the minimal distance between particles
is also larger than $min_dist, that was set earlier. To turn the capping off, we set
ljforcecap to 0. Then we equilibrate our system until all relevant physical observables
are fluctuating around their mean values. In the case of Lennard Jones it is enough
to monitor energy. To equilibrate we rescale particles’ velocities to reach the target
temperature.

94 ###
95 # Warmup I n t e g r a t i o n #
96 ###
97

98 set a c t m i n d i s t [analyze mindist]
99 puts ” Star t with minimal d i s t ance $ a c t m i n d i s t ”

100

101 # open Observab le f i l e
102

103 puts ”\ nStart warmup i n t e g r a t i o n : ”
104 puts ”At maximum $warm n times t imes $warm steps s t ep s ”
105 puts ”Stop i f minimal d i s t ance i s l a r g e r than $min d i s t ”
106

107 # s e t LJ cap
108 set cap 1 . 0
109 inter l j f o r c e c a p $cap
110

111 # Warmup I n t e g r a t i o n Loop, e q u i l i b r a t e p a r t i c l e s
112 set i 0
113 while { $ i < $warm n times && $ a c t m i n d i s t < $min d i s t } {
114 integrate $warm steps
115

116 # Warmup c r i t e r i o n
117 set a c t m i n d i s t [analyze mindist]
118 puts −nonewline ”run $ i at time= [setmd time] (LJ cap=$cap) min

d i s t = $ a c t m i n d i s t \ r ”
119

120 # to f o r c e the pr in tout immediately and don ’ t wait for the
b u f f e r been pr in ted

121 flush stdout
122

123 # I n c r e a s e LJ cap
124 set cap [expr $cap+1. 0]

14

125 inter l j f o r c e c a p $cap
126 incr i
127 }
128

129 inter l j f o r c e c a p 0 ;
130

131 puts ”\n Warm up f i n i s h e d \n”
132

133 ### Thermal i za t ion
134 setmd t ime s t ep $ e q t s t e p
135 for { set i 0 } { $ i < $ e q u i l i b r a t i o n i t e r a t i o n s } { incr i } {
136 integrate $ e q u i l i b r a t i o n i n t e r v a l
137 set e n e r g i e s [analyze energy]
138 resca le veloc it ies $targe t t empera ture [setmd n part]
139 puts −nonewline ”eq run $ i at time= [setmd time] \ r ”
140 }

After we have set the necessary environment and warmed up our system, we can now
start with the actual simulation. To analyse our data after the simulation, we open some
files for writing the data in.

142 puts ” sampling ”
143 setmd t ime s t ep $t s t ep
144

145 # f i l e s to save s i m u l a t i o n datas
146 set en [open ” data / energy .dat ” ”w”]
147 set b l o c k f i l e [open ” data / s i m i n f o . d a t ” ”w”]
148

149 puts $en ”#”
150 puts $en ”#”
151 puts $en ”# Pressure Kinet i c Po t e n t i a l Temperature ”
152 puts $en ”# ”
153 for { set i 0} { $ i < $ s a m p l i n g i t e r a t i o n s } { incr i } {
154 integrate $ s a m p l i n g i n t e r v a l
155 save sim $ b l o c k f i l e ” id pos v f q type ” ” a l l ”

Task 5 Study the file lj functions.tcl, specifically the procedure save sim and
how it is called in lj tutorial.tcl file. Then run lj tutorial.tcl and check
data directory for the simulation data file. Inspect the simulation data file
sim info.dat.
Run ESPResSo by typing Espresso lj tutorial.tcl on the Linux command line.

The save sim statement calls the function defined in lj tutorial.tcl . We tell the function
what parameters to be saved and which particles we want to save (all). Before continuing

15

with our example we have a look at the save sim procedure

proc save sim { c f i l e p a r i n f o range } {
b l o c k f i l e $ c f i l e wr i t e variable a l l
b l o c k f i l e $ c f i l e wr i t e t c l v a r i a b l e a l l
b l o c k f i l e $ c f i l e wr i t e p a r t i c l e s $pa r in f o $range
b l o c k f i l e $ c f i l e wr i t e i n t e r a c t i o n s
b l o c k f i l e $ c f i l e wr i t e bonds
b l o c k f i l e $ c f i l e wr i t e random
b l o c k f i l e $ c f i l e wr i t e seed
b l o c k f i l e $ c f i l e wr i t e bitrandom
b l o c k f i l e $ c f i l e wr i t e b i t s e e d
}

This procedure saves all variables available in our programme to $cfile which is in our
example sim info.dat. Have a look at the sim info.dat to see what that means

{variable

{box_l 5.2387886 5.2387886 5.2387886}

{cell_grid 2 2 2}

{cell_size 2.6193943 2.6193943 2.6193943}

{dpd_gamma 0.0}

{dpd_r_cut 0.0}

...

}

{tclvariable

{density 0.8442}

{tstep 0.001}

{energies { energy -384.41147 } { kinetic 121.41453 } { 0 0 nonbonded -505.826 }}

{lj1_cut 2.5}

{blockfile file6}

...

}

{particles {id pos v f q type}

{0 13.08106 4.376436 2.4466876 1.2432192 ...}

{1 -2.7657422 -0.09919841 -1.0362237 -0.4642931...}

{2 4.4635587 5.4885591 5.460385 0.18670765 ...}

{3 -2.9920063 0.88519503 7.3518191 0.5820964 ...}

...

}

{interactions

{0 0 lennard-jones 1.0 1.0 2.5 0.0040792228 0.0 0.0 }

}

{bonds

{0 { } }

{1 { } }

...

}

{random

16

{1198928294 }

}

{seed

{16838}

}

{bitrandom

{0 147 2085679233 }

}

{bitseed

{16838}

}

...

What do we see? We find that there are five types of blocks which are repeated very
often. The first block (variable) contains all ESPResSo variables, the second (tclvariable)
all variables of the tcl script. In the third block we find the entire particle data we had
told the save sim function to save (id: particle id, pos: position, v: velocity, : force,
q: charge, type). save sim saves interactions, bonds, random, seed, bitrandom and
bitseed. In our case the interaction is Lennard-Jones. The bonds block is empty because
the particles are not bound to each other like, for example, in a polymer. The rest of the
blocks contains information (random, seed, bitrandom and bitseed) to be able to restore
the status of the random generator as it was while writing these blocks. What do we
need that for? If we rerun the simulation we will get the same results after we have set
our variables including the random generator status. Looking at the example script, we
see that the save sim function is called every time in the loop; that is why the blocks
are repeated.

Task 6 Study and run blockfile read.tcl to see how to read offline data. Modify
this script to print out simulation time and average particle positions xavg, yavg, zavg.

In the energy.dat file we print out the values for pressure, kinetic and potential energies,
temperature obtained with the command analyze energy.

156 set e n e r g i e s [analyze energy]
157 set pre s su r e [analyze pre s su r e t o t a l]
158 set t o t a l [expr [lindex $ e n e r g i e s 0 1]/ $n part]
159 set k i n e t i c [expr [lindex $ e n e r g i e s 1 1]/ $n part]
160 set p o t e n t i a l [expr [lindex $ e n e r g i e s 2 3]/ $n part]
161 set k i n e t i c t e m p e r a t u r e [expr [lindex $ e n e r g i e s 1 1] / (1 .5∗ [setmd

n part])]
162 set temperature $k ine t i c t empe ra tu r e
163 puts $en ” $ i $pre s su re $ k i n e t i c $ p o t e n t i a l $temperature

$ t o t a l ”
164 lappend apre s su r e $pre s su r e

17

165 lappend a k i n e t i c $ k i n e t i c
166 lappend a p o t e n t i a l $ p o t e n t i a l
167 lappend atemperature $temperature
168 lappend a t o t a l $ t o t a l
169 puts −nonewline ” i n t e g r a t i o n step $ i / $ s a m p l i n g i t e r a t i o n s \ r

”
170 }
171 close $en

kinetic temperature here refers to the measured temperature obtained from kinetic
energy and the number of degrees of freedom in the system. It should fluctuate around
the preset temperature of the thermostat.

18

Task 7 Plot the time evolution of pressure and energy, which are written into the
data directory in the file energy.dat.

The result plot for energy.dat should be similar to this one:

-6

-5

-4

-3

-2

-1

0

1

2

0 50 100 150 200 250

Energy

Pressure
Kinetic
Potential
Temperature

As we can see the system is in equilibrium because pressure, potential and kinetic energy
per particle and calculated current temperature fluctuate around their mean values.

6.9 Simple Error Analysis on Time Series Data with uwerr

Espresso provides a build-in time series analysis tool called uwerr. In our simulation
we don’t know if values of the same variable that we got from two adjacent samples are
correlated or not and sampling too seldom will lead either to long runs of the simulation
or to bad statistics. On the other hand, sampling too often leads to strong correlations
between the samples, which will make us underestimate the statistical errors in our
measurements using usual formulas e. g. for the standard deviation. uwerr is used
to determine the mean and its standard error of total energy per particle for arbitrary
numerical time series based on the article by Wolff [7]. Unlike the standard formulas, it
can be used even with strongly correlated samples.

Here to obtain, for example, the error for the total energy we submit as a first argument
for uwerr the array of all measured values of total energy $atotal, and then the total
number of samples $sampling_iterations. 1 as the third argument means that we
ran only one full measument (complete simulation). In general, the mean value could
be also obtained from several simulations, providing $atotal then as a matrix, not as
an array, the total number of samples for every simulation should be the same and the
third argument for uwerr would be the number of simulations. uwerr returns a string,
the first value of which is a calculated mean value and the second is its error.

19

172 puts ”−−Reporting Energ i e s and Temperature”
173 set error [uwerr $ a t o t a l $ s a m p l i n g i t e r a t i o n s 1]
174 set value [lindex $ e r r o r 0]
175 set ve r ro r [lindex $ e r r o r 1]
176 puts ” Total Energy: $value $ve r ro r ”
177 set error [uwerr $ a k i n e t i c $ s a m p l i n g i t e r a t i o n s 1]
178 set value [lindex $ e r r o r 0]
179 set ve r ro r [lindex $ e r r o r 1]
180 puts ” Kinet i c Energy: $value $ve r ro r ”
181 set error [uwerr $ a p o t e n t i a l $ s a m p l i n g i t e r a t i o n s 1]
182 set value [lindex $ e r r o r 0]
183 set ve r ro r [lindex $ e r r o r 1]
184 puts ” Po t e n t i a l Energy: $value $ve r ro r ”
185 set error [uwerr $atemperature $ s a m p l i n g i t e r a t i o n s 1]
186 set value [lindex $ e r r o r 0]
187 set ve r ro r [lindex $ e r r o r 1]
188 puts ” Temperature : $value $ve r ro r ”
189 set error [uwerr $apre s sure $ s a m p l i n g i t e r a t i o n s 1]
190 set value [lindex $ e r r o r 0]
191 set ve r ro r [lindex $ e r r o r 1]
192 puts ” Pressure : $value $ve r ro r ”
193 exit

The last line here is the last line of the script terminating the process.

Task 8 Inspect what analyse pressure total command returns. Make a similar
error analysis for total pressure.

Hint: analyse pressure (without total) returns the pressure and corresponding con-
tributions to it.

20

6.10 Other Useful Scripts

The radial distribution function (RDF) describes the distibution of particles around the
center of a fixed particle, as a function of the particle-particle distance. This of course
assumes that the particle distribution is isotropic around the particles.

Task 9 Run rdf.tcl, inspect the code and plot the RDF from data/rdf.dat. Try
different parameters for the analyze rdf command, such as the bin size. What do
you observe?

Figure 3: The rdf.dat plot should be similar to this one

Our RDF is structureless, which means we have liquid. If the bin size is increased, the
number of points in the graph will also increase, but due to poorer sampling the curve
will not be smooth anymore.

21

The velocity autocorrelation function (VACF) is an averaged time dependent correla-
tion function of all particles’ velocities.

Task 10 Run vacf.tcl, inspect the code and plot the VACF from data/vacf.dat.
The VACF C(t) can be computed directly:

C(t) = 〈vi(0)vi(t)〉

which can be estimated by

C(t) =
1

N

N∑
i=0

vi(0)vi(t)

where N is the number of particles.
Try to modify vacf.tcl by using vecsub and veclen and the tcl math functions.

-0,5

0

0,5

1

1,5

2

2,5

3

0 50 100 150 200 250

VACF

Figure 4: The vacf.dat plot should be similar to this one

We can see when time is bigger than 50 the particles have already ’forgot’ about their
initial velocities. Sampling more in the time interval [0;50] will show the decay of VACF
there.

22

The mean square displacement (MSD) is the average squared distance that a particle
travelled during a given time.

Task 11 Run msd.tcl, inspect the code and plot the MSD from data/msd.dat.
The MSD can be simply computed by:

〈∆r(t)2〉 =
1

N

N∑
i=0

∆ri(t)
2

or

〈∆r(t)2〉 =
1

N

N∑
i=0

|ri(t)− ri(0)|2

0

10

20

30

40

50

60

70

0 50 100 150 200 250

MSD

Figure 5: The msd.dat plot should be similar to this one

On short time scales a particle does not collide with others (ballistic regime) so the
distance travelled should be proportional to the time and therefore the MSD should
increase quadratically. On bigger time scales, a particle performs sort of a random walk
due to many interactions with other particles. This regime is called diffusive; in this
regime the MSD increases linearly with time. The coefficient of proportionality is the
diffusion coefficient: D = 1

2dt〈∆r(t)〉
2, where d is the dimensionality of the problem and

t the travelling time.

If msd.dat is plotted in log-log scale, then ballistic and diffusive regimes will be visible
even better (better sampling won’t harm).

23

References

[1] http://www.espresso.mpg.de/.

[2] HJ Limbach, A. Arnold, and B. Mann. ESPResSo; an extensible simulation package
for research on soft matter systems. Computer Physics Communications, 174(9):704–
727, 2006.

[3] A. Arnold, BA Mann, HJ Limbach, and C. Holm. ESPResSo–An Extensible Simula-
tion Package for Research on Soft Matter Systems. Forschung und wissenschaftliches
Rechnen, 63:43–59, 2003.

[4] http://www.tcl.tk.

[5] http://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html.

[6] Daan Frenkel and Berend Smit. Understanding Molecular Simulation. Academic
Press, San Diego, second edition, 2002.

[7] U. Wolff. Monte carlo errors with less errors. Comput. Phys. Commun., 156:143–153,
2004.

24

	Introduction
	Background
	Tutorial Outline
	First steps
	Short TCL Tutorial
	Assignments and evaluation
	Comparisons and looping
	Lists

	Adding a new Tcl command
	Writing to a file
	System setup
	Lennard-Jones Potential
	Units
	Simulation Parameters
	Assigning Particle Properties
	Assigning Interactions
	Generating Data: Lennard-Jones Liquid Simulation
	System Setup

	Simple Error Analysis on Time Series Data with uwerr
	Other Useful Scripts

