
ESPResSo User’s Guide

for version 3.1.2

March 8, 2013

Contents

1 Introduction 7
1.1 Guiding principles . 7
1.2 Available simulation methods . 8
1.3 Basic program structure . 9
1.4 On units . 9
1.5 Requirements . 10
1.6 Syntax description . 10

2 First steps 12
2.1 Quick installation . 12
2.2 Running ESPResSo . 13
2.3 Creating the first simulation script . 13
2.4 tutorial.tcl . 19

3 Getting, compiling and running ESPResSo 20
3.1 Running configure . 20
3.2 make: Compiling, testing and installing ESPResSo 22
3.3 Running ESPResSo . 23
3.4 myconfig.h: Activating and deactivating features 24

4 Setting up particles 26
4.1 part: Creating single particles . 26
4.2 Creating groups of particle . 30
4.3 constraint: Setting up constraints . 36
4.4 Virtual sites . 38

5 Setting up interactions 42
5.1 Isotropic non-bonded interactions . 42
5.2 Anisotropic non-bonded interactions . 47
5.3 Bonded interactions . 50
5.4 Bond-angle interactions . 53
5.5 Dihedral interactions . 54
5.6 Coulomb interaction . 55
5.7 Dipolar interaction . 62
5.8 Special interaction commands . 65

3

6 Setting up the system 68
6.1 setmd: Setting global variables. 68
6.2 thermostat: Setting up the thermostat 70
6.3 nemd: Setting up non-equilibrium MD . 73
6.4 cellsystem: Setting up the cell system 74
6.5 AdResS . 76
6.6 CUDA . 76
6.7 Creating bonds when particles collide . 77

7 Running the simulation 79
7.1 integrate: Running the simulation . 79
7.2 change_volume: Changing the box volume 79
7.3 Stopping particles . 80
7.4 velocities: Setting the velocities . 80
7.5 invalidate_system . 80
7.6 Parallel tempering . 81
7.7 Metadynamics . 85

8 Analysis in Tcl 87
8.1 Available observables . 87
8.2 Analyzing groups of particles (molecules) 97
8.3 Storing configurations . 101
8.4 uwerr: Computing statistical errors in time series 103

9 Analysis in the core 104
9.1 Observables . 104
9.2 Correlations . 108

10 Input / Output 115
10.1 blockfile: Using the structured file format 115
10.2 Checkpointing (deprecated) . 119
10.3 Writing VTF files . 121
10.4 Writing PDB/PSF files . 124
10.5 Online-visualisation with VMD . 125
10.6 Errorhandling . 127

11 Auxilliary commands 128
11.1 Center of mass motion . 128
11.2 Finding particles and bonds . 128
11.3 Additional Tcl math-functions . 130
11.4 Checking for features of ESPResSo . 136

12 Lattice-Boltzmann 137
12.1 Setting up a LB fluid . 137
12.2 LB as a thermostat . 139

4

12.3 Reading and setting single lattice nodes 139

12.4 Setting up boundary conditions . 140

12.5 Choosing between the GPU and CPU implementations 141

12.6 Electrohydrodynamics . 142

13 External package: mbtools 143

13.1 Introduction . 143

13.2 Installing and getting started . 144

13.3 The main.tcl script . 145

13.4 Analysis . 147

13.5 System generation . 151

13.6 Utils . 158

13.7 mmsg . 164

14 Under the hood 167

14.1 Internal particle organization . 167

15 Getting involved 169

15.1 Community support and mailing lists . 169

15.2 Contributing your own code . 170

15.3 Developers’ guide . 170

15.4 User’s guide . 170

A ESPResSo quick reference 171

B Features 181

B.1 General features . 181

B.2 Interactions . 183

B.3 Debug messages . 184

C Sample scripts 187

D Maxwell Equations Molecular Dynamics (MEMD) 189

D.1 Equations of motion . 189

D.2 Discretization . 190

D.3 Initialization of the algorithm . 190

D.4 Time integrator . 191

D.5 Self–energy . 192

D.6 For which systems to use the algorithm 193

E The MMM family of algorithms 195

E.1 Introduction . 195

E.2 MMM2D . 197

E.3 MMM1D . 199

E.4 ELC . 200

5

E.5 Errors . 201

F Bibliography 203

Index 208

6

1. Introduction

ESPResSo is a simulation package designed to perform Molecular Dynamics (MD) and
Monte Carlo (MC) simulations. It is meant to be a universal tool for simulations of a
variety of soft matter systems. ESPResSo features a broad range of interaction poten-
tials which opens up possibilities for performing simulations using models with different
levels of coarse-graining. It also includes modern and efficient algorithms for treatment
of electrostatics (P3M, MMM-type algorithms, Maggs algorithm, . . .), hydrodynamic
interactions (DPD, Lattice-Boltzmann), and magnetic interactions. It is designed to
exploit the capabilities of parallel computational environments. The program is being
continuously extended to keep the pace with current developments both in the algorithms
and software.

The kernel of ESPResSo is written in C with computational efficiency in mind. In-
teraction between the user and the simulation engine is provided via a Tcl scripting
interface. This enables setup of arbitrarily complex systems which users might want to
simulate in future, as well as modifying simulation parameters during runtime.

1.1. Guiding principles

ESPResSo is a tool for performing computer simulation and this user guide describes how
to use this tool. However, it should be borne in mind that being able to operate a tool
is not sufficient to obtain physically meaningful results. It is always the responsibility of
the user to understand the principles behind the model, simulation and analysis methods
he is using. ESPResSo will not do that for you!

It is expected that the users of ESPResSo and readers of this user guide have a thorough
understanding of simulation methods and algorithms they are planning to use. They
should have passed a basic course on molecular simulations or read one of the renown
textbooks, e.g. [19]. It is not necessary to understand everything that is contained in
ESPResSo, but it is inevitable to understand all methods that you want to use. Using
the program as a black box without proper understanding of the background will most
probably result in wasted user and computer time with no useful output.

To enable future extensions, the functionality of the program is kept as general as
possible. It is modularized, so that extensions to some parts of the program (e.g. im-
plementing a new potential) can be done by modifying or adding only few files, leaving
most of the code untouched.

To facilitate the understanding and the extensibility, much emphasis is put on read-
ability of the code. Hard-coded assembler loops are generally avoided in hope that the
overhead in computer time will be more than compensated for by saving much of the
user time while trying to understand what the code is supposed to do.

7

Hand-in-hand with the extensibility and readability of the code comes the flexibility of
the whole program. On the one hand, it is provided by the generalized functionality of
its parts, avoiding highly specialized functions. An example can be the implementation
of the Generic Lennard-Jones potential described in section 5.1.3 where the user can
change all available parameters. Where possible, default values are avoided, providing
the user with the possibility of choice. ESPResSo cannot be aware whether your particles
are representing atoms or billiard balls, so it cannot check if the chosen parameters make
sense and it is the user’s responsibility to make sure they do.

On the other hand, flexibility of ESPResSo stems from the employment of Tcl at the
steering level. Apart from the ability to modify the simulation and system parameters at
runtime, many simple tasks which are not computationally critical can be implemented
at this level, without even touching the C-kernel. For example, simple problem-specific
analysis routines can be implemented in this way and made interact with the simulation
core. Another example of the program’s flexibility is the possibility to integrate system
setup, simulation and analysis in one single control script. ESPResSo provides commands
to create particles and set up interactions between them. Capping of forces helps prevent
system blow-up when initially some particles are placed on top of each other. Using
the Tcl interface, one can simulate the randomly set-up system with capped forces,
interactively check whether it is safe to remove the cap and switch on the full interactions
and then perform the actual productive simulation.

1.2. Available simulation methods

• Ensembles:

– NVE

– NVT

– NpT

• Algorithms for charged systems:

– P3M for fully periodic systems

– ELC and MMM-family of algorithms for charged systems with non-periodic
boundary conditions

– MEMD (Maggs algorithm)

• Hydrodynamics:

– DPD (as a thermostat)

– Lattice-Boltzmann

• Non-equilibrium MD to simulate shear flow

• Parallel tempering

• Metadynamics

8

• Rigid bodies via virtual sites

• AdResS

1.3. Basic program structure

As already mentioned, ESPResSo consists of two components. The simulation engine is
written in C for the sake of computational efficiency. The steering or control level is
interfaced to the kernel via an interpreter of the Tcl scripting language.

The kernel performs all computationally demanding tasks. Before all, integration of
Newton’s equations of motion, including calculation of energies and forces. It also takes
care of internal organization of data, storing the data about particles, communication
between different processors or cells of the cell-system. The kernel is modularized so that
basic functions are accessed via a set of well-defined lean interfaces, hiding the details of
the complex numerical algorithms.

The Tcl interpreter contains several special commands as an extension to Tcl, which
provide the interaction with the simulation engine. Thus, the user has at hand the
full realm of Tcl commands and constructs plus a few commands to communicate with
the simulation engine. The interfacing commands are designed so that they can both
set properties of the system (set up particles, interactions, thermostat) and retrieve
information about the already set-up entities. The standard Tcl constructs allow for
a flexible decision-making in the course of the simulation. This can be for example
exploited to check whether a simulation has reached the desired state. With a certain
overhead in efficiency, it can also be used to reject/accept new configurations in combined
MD/MC schemes. In principle, any parameter which is accessible from the Tcl level
can be changed at any moment of runtime. In this way methods like thermodynamic
integration become readily accessible.

The focus of the user guide is documenting the Tcl commands, their behaviour and
use in the simulation. It only describes certain technical details of implementation which
are necessary for understanding how the commands work. Technical documentation of
the code and program structure is contained in the Developers’ guide (see section 15.3).

1.4. On units

What is probably one of the most confusing subjects for beginners of ESPResSo is, that
ESPResSo does not predefine any units. While most MD programs specify a set of units,
like, for example, that all lengths are measured in Ångström or nanometers, times are
measured in nano- or picoseconds and energies are measured in kJ/mol, ESPResSo does
not do so.

Instead, the length-, time- and energy scales can be freely chosen by the user. A length
of 1.0 can mean a nanometer, an Ångström, or a kilometer - depending on the physical
system, that the user has in mind when he writes his ESPResSo-script. The user can
choose the unit system that suits the system best.

9

When creating particles that are intended to represent a specific type of atoms, one
will probably use a length scale of Ångström. This would mean, that e.g. the parameter
σ of the Lennard-Jones interaction between two atoms would be set to twice the van-
der-Waals radius of the atom in Ångström. Alternatively, one could set σ to 2.0 and
measure all lengths in multiples of the van-der-Waals radius.

The second choice to be made is the energy (and time-) scale. One can for example
choose to set the Lennard-Jones parameter ε to the energy in kJ

mol . Then all energies will
be measured in that unit. Alternatively, one can choose to set it to 1.0 and measure
everything in multiples of the van-der-Waals binding energy.

As long as one remains within the same unit system throughout the whole ESPResSo-
script, there should be no problems.

1.5. Requirements

The following libraries and tools are required to be able to compile and use ESPResSo:

Tcl/Tk ESPResSo requires the Toolkit Command Language Tcl/Tk 1 in the version 8.3
or later. Some example scripts will only work with Tcl 8.4. You do not only need
the interpreter, but also the header files and libraries. Depending on the operating
system, these may come in separate development packages. If you want to use a
graphical user interface (GUI) for your simulation scripts, you will also need Tk.

FFTW For some algorithms (e.g. P3M), ESPResSo needs the FFTW library version 3
or later 2 for Fourier transforms. Again, the header files are required.

MPI Finally, if you want to use ESPResSo in parallel, you need a working MPI environ-
ment (that implements the MPI standard version 1.2).

1.6. Syntax description

Throughout the user’s guide, formal definitions of the syntax of several Tcl-commands
can be found. The following conventions are used in these descriptions:

• Different variants of a command are labeled (1), (2), . . .

• Keywords and literals of the command that have to be typed exactly as given are
written in typewriter font.

• If the command has variable arguments, they are set in italicfont . The descrip-
tion following the syntax definition should contain a detailed explanation of the
argument and its type.

• (alt1 | alt2) specifies, that one of the alternatives alt1 or alt2 can be used.

1http://www.tcl.tk/
2http://www.fftw.org/

10

http://www.tcl.tk/
http://www.fftw.org/

• [argument] specifies, that the augment argument is optional, i.e. it can be omitted.

• When an optional argument or a whole command is marked by a superscript label
(1), this denotes that the argument can only be used, when the corresponding
feature (see appendix B on page 181) specified in “Required features” is activated.

Example
(1) constraint wall normal nx ny nz dist d type id
(2) constraint sphere center cx cy cz radius rad direction direction

type id
(3) constraint rod center cx cy lambda lambda 1

(4) constraint ext_magn_field fx fy fz
2,3

Required features: CONSTRAINTS 1 ELECTROSTATICS 2 ROTATION 3 DIPOLES

11

2. First steps

2.1. Quick installation

If you have installed the requirements (see section 1.5 on page 10) in standard locations,
to compile ESPResSo, it is usually enough to execute the following sequence of two steps
in the directory where you have unpacked the sources:

./configure

make

This will compile ESPResSo in a freshly created object path named according to your
CPU and operating system. As you have not yet specified a configuration, a standard
version will be built with the most often used features. Usually you will want to build
another version of ESPResSo with options better suited for your purpose.

In some cases, e.g. when ESPResSo needs to be compiled for several different platforms
or when different versions with different sets of features are required, it might be useful
to execute the commands not in the source directory itself, but to start configure

from another directory (see section 3.1.1 on page 21). Furthermore, many features
of ESPResSo can be selectively turned on or off in the local configuration header (see
section 3.4 on page 24) before starting the compilation with make.

The shell script configure prepares the source code for compilation. It will determine
how to use and where to find the different libraries and tools required by the compilation
process, and it will test what compiler flags are to be used. The script will find out most
of these things automatically. If something is missing, it will complain and give hints on
how to solve the problem. The configuration process can be controlled with the help of
a number of options that are explained in section 3.1 on page 20.

The command make will compile the source code. Depending on the options passed
to the program, make can also be used for a number of other things:

• It can install and uninstall the program to some other directories. However, nor-
mally it is not necessary to actually install ESPResSo to run it.

• It can test ESPResSo for correctness.

• It can build the documentation.

The details of the usage of make are described in section 3.2 on page 22.
When these steps have successfully completed, ESPResSo can be started with the

command (see section 3.3 on page 23)

Espresso file

12

2.2. Running ESPResSo

ESPResSo is implemented as an extension to the Tcl scripting language. This means
that you need to write a script for any task you want to perform with ESPResSo. To
learn about the Tcl script language and especially the ESPResSo extensions, this chapter
offers two tutorial scripts. The first will guide you step-by-step through creating your
first simulation script, while the second script is a well documented example simulation
script. Since the latter is slightly more complex and uses more advanced features of
ESPResSo, we recommend to work through both scripts in the presented order. If you
want to learn about the Tcl language in greater detail, there is an excellent tutorial 1.

2.3. Creating the first simulation script

This section introduces some of the features of ESPResSo by constructing step by step
a simulation script for a simple salt crystal. We cannot give a full Tcl tutorial here;
however, most of the constructs should be self–explanatory. We also assume that the
reader is familiar with the basic concepts of a MD simulation here. The code pieces can
be copied step by step into a file, which then can be run using Espresso file from the
ESPResSo source directory.

Our script starts with setting up the initial configuration. Most conveniently,
one would like to specify the density and the number of particles of the system as
parameters:

set n_part 200; set density 0.7

set box_l [expr pow($n_part/$density,1./3.)]

These variables do not change anything in the simulation engine, but are just standard
Tcl variables; they are used to increase the readability and flexibility of the script. The
box length is not a parameter of this simulation; it is calculated from the number of
particles and the system density. This allows to change the parameters later easily, e.g.
to simulate a bigger system.

The parameters of the simulation engine are modified by the setmd command.
For example

setmd box_l $box_l $box_l $box_l

setmd periodic 1 1 1

defines a cubic simulation box of size box_l, and periodic boundary conditions in
all spatial dimensions. We now fill this simulation box with particles

1http://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html

13

http://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html

set q 1; set type 0

for {set i 0} { $i < $n_part } {incr i} {

set posx [expr $box_l*[t_random]]

set posy [expr $box_l*[t_random]]

set posz [expr $box_l*[t_random]]

set q [expr -$q]; set type [expr 1-$type]

part $i pos $posx $posy $posz q $q type $type

}

This loop adds n_part particles at random positions, one by one. In this construct,
only two commands are not standard Tcl commands: the random number generator
t_random and the part command, which is used to specify particle properties, here the
position, the charge q and the type. In ESPResSo the particle type is just an integer
number which allows to group particles; it does not imply any physical parameters. Here
we use it to tag the charges: positive charges have type 0, negative charges have type 1.

Now we define the ensemble that we will be simulating. This is done using the
thermostat command. We also set some integration scheme parameters:

setmd time_step 0.01; setmd skin 0.4

set temp 1; set gamma 1

thermostat langevin $temp $gamma

This switches on the Langevin thermostat for the NVT ensemble, with temperature temp
and friction gamma. The skin depth skin is a parameter for the link–cell system which
tunes its performance, but cannot be discussed here.

Before we can really start the simulation, we have to specify the interactions
between our particles. We use a simple, purely repulsive Lennard-Jones interaction
to model the hard core repulsion [20], and the charges interact via the Coulomb
potential:

set sig 1.0; set cut [expr 1.12246*$sig]

set eps 1.0; set shift [expr 0.25*$eps]

inter 0 0 lennard-jones $eps $sig $cut $shift 0

inter 1 0 lennard-jones $eps $sig $cut $shift 0

inter 1 1 lennard-jones $eps $sig $cut $shift 0

inter coulomb 10.0 p3m tunev2 accuracy 1e-3 mesh 32

The first three inter commands instruct ESPResSo to use the same purely repulsive
Lennard–Jones potential for the interaction between all combinations of the two parti-
cle types 0 and 1; by using different parameters for different combinations, one could
simulate differently sized particles. The last line sets the Bjerrum length to the value
10, and then instructs ESPResSo to use P3M for the Coulombic interaction and to try
to find suitable parameters for an rms force error below 10−3, with a fixed mesh size of
32. The mesh is fixed here to speed up the tuning; for a real simulation, one will also
tune this parameter.

If we want to calculate the temperature of our system from the kinetic energy, we need
to know the number of the degrees of freedom of the particles. In ESPResSo these are

14

usually 3 translational plus 3 rotational degrees of freedom (if the feature ROTATION
is activated). You can get this number in the following way 2:

if { [regexp "ROTATION" [code_info]] } {

set deg_free 6

} else { set deg_free 3 }

Now we can integrate the system:

set integ_steps 200

for {set i 0} { $i < 20 } { incr i} {

set temp [expr [analyze energy kinetic]/(($deg_free/2.0)*$n_part)]

puts "t=[setmd time] E=[analyze energy total], T=$temp"

integrate $integ_steps

}

This code block is the primary simulation loop and runs 20×integ_steps MD steps.
Every integ_steps time steps, the potential, electrostatic and kinetic energies are
printed out (the latter one as temperature). However, the simulation will crash:
ESPResSo complains about particle coordinates being out of range. The reason for
this is simple: Due to the initial random setup, the overlap energy is around a
million kT, which we first have to remove from the system. In ESPResSo, this is
can be accelerated by capping the forces, i. e. modifying the Lennard–Jones force
such that it is constant below a certain distance. Before the integration loop, we
therefore insert this equilibration loop:

for {set cap 20} {$cap < 200} {incr cap 20} {

puts "t=[setmd time] E=[analyze energy total]"

inter ljforcecap $cap; integrate $integ_steps

}

inter ljforcecap 0

This loop integrates the system with a force cap of initially 20 and finally 200. The last
command switches the force cap off again. With this equilibration, the simulation script
runs fine.

However, it takes some time to simulate the system, and one will probably like to
write out simulation data to configuration files, for later analysis. For this purpose
ESPResSo has commands to write simulation data to a Tcl stream in an easily
parsable form. We add the following lines at end of integration loop to write the
configuration files “config 0” through “config 19”:

set f [open "config_$i" "w"]

blockfile $f write tclvariable {box_l density}

blockfile $f write variable box_l

blockfile $f write particles {id pos type}

close $f

2There also exists a Tcl function degrees_of_freedom which does the same.

15

Figure 2.1.: VMD Snapshot of the salt system

The created files “config ...” are human–readable and look like

{tclvariable

{box_l 10}

{density 0.7}

}

{variable {box_l 10.0 10.0 10.0} }

{particles {id pos type}

{0 3.51770181433 4.3208975936 5.30529948918 0}

{1 3.93145531704 6.58506447035 6.95045147034 1}

...

}

As you can see, such a blockfile consists of several Tcl lists, which are called blocks,
and can store any data available from the simulation. Reading a configuration is
done by the following simple script:

set f [open $filename "r"]

while { [blockfile $f read auto] != "eof" } {}

close $f

The blockfile read auto commands will set the Tcl variables box_l and density to
the values specified in the file when encountering the tclvariable block, and set the
box dimensions for the simulation when encountering the variable block. The particle
positions and types of all 216 particles are restored when the particles block is read.
Note that it is important to have the box dimensions set before reading the particles, to
avoid problems with the periodic boundary conditions.

With these configurations, we can now investigate the system. As an example, we
will create a second script which calculates the averaged radial distribution functions

16

g++(r) and g+−(r). The radial distribution function for a the current configuration
can be obtained using the analyze command:

set rdf [analyze rdf 0 1 0.9 [expr $box_l/2] 100]

set rlist ""

set rdflist ""

foreach value [lindex $rdf 1] {

lappend rlist [lindex $value 0]

lappend rdflist [lindex $value 1]

}

The shown analyze rdf command returns the distribution function of particles of type
1 around particles of type 0 (i. e. of opposite charges) for radii between 0.9 and half the
box length, subdivided into 100 bins. Changing the first two parameters to either “0 0”
or “1 1” allows to determine the distribution for equal charges. The result is a list of
r and g(r) pairs, which the following foreach loop divides up onto two lists rlist and
rdflist.

To average over a set of configurations, we put the two last code snippets into a
loop like this:

set cnt 0

for {set i 0} {$i < 100} {incr i} { lappend avg_rdf 0}

foreach filename $argv {

set f [open $filename "r"]

while { [blockfile $f read auto] != "eof" } {}

close $f

set rdf [analyze rdf 0 1 0.9 [expr $box_l/2] 100]

set rlist ""

set rdflist ""

foreach value [lindex $rdf 1] {

lappend rlist [lindex $value 0]

lappend rdflist [lindex $value 1] }

set avg_rdf [vecadd $avg_rdf $rdflist]

incr cnt

}

set avg_rdf [vecscale [expr 1.0/$cnt] $avg_rdf]

Initially, the sum of all g(r), which is stored in avg_rdf, is set to 0. Then the loops
over all configurations given by argv, calculates g(r) for each configuration and adds
up all the g(r) in avg_rdf. Finally, this sum is normalized by dividing by the number
of configurations. Note the “1.0/$cnt”; this is necessary, since “1/$cnt” is interpreted
as an integer division, which results in 0 for cnt > 1. argv is a predefined variable: it
contains all the command line parameters. Therefore this script should be called like

Espresso nnodes script [config...]

where nnodes is the number of CPUs ESPResSo should be running on.

17

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 1.5 2 2.5 3

g(
r)

r

Figure 2.2.: Radial distribution functions g++(r) between equal charges (rectangles) and
g+−(r) for opposite charges (circles). The plus symbols denote g(r) for an
uncharged system.

The printing of the calculated radial distribution functions is simple. Add to the
end of the previous snippet the following lines:

set plot [open "rdf.data" "w"]

puts $plot "\# r rdf(r)"

foreach r $rlist rdf $avg_rdf { puts $plot "$r $rdf" }

close $plot

This instructs the Tcl interpreter to write the avg_rdf to the file rdf.data in gnuplot–
compatible format. Fig. 2.2 shows the resulting radial distribution functions, averaged
over 100 configurations. In addition, the distribution for a neutral system is given,
which can be obtained from our simulation script by simply removing the command
inter coulomb ... and therefore not turning on P3M.

The code example given before is still quite simple, and the reader is encouraged to
try to extend the example a little bit, e. g. by using differently sized particle, or changing
the interactions. If something does not work, ESPResSo will give comprehensive error
messages, which should make it easy to identify mistakes. For real simulations, the
simulation scripts can extend over thousands of lines of code and contain automated
adaption of parameters or online analysis, up to automatic generation of data plots.
Parameters can be changed arbitrarily during the simulation process, as needed for e. g.
simulated annealing. The possibility to perform non–standard simulations without the
need of modifications to the simulation core was one of the main reasons why we decided
to use a script language for controlling the simulation core.

18

2.4. tutorial.tcl

In the directory samples/ of the es sources, you will find a well documented simulation
script tutorial.tcl, which takes you step by step through a slightly more complicated
simulation of a polyelectrolyte system. The basic structure of the script is however
the same as in the previous example and probably the same as the structure of most
ESPResSo simulation scripts.

Initially, some parameters and global variables are set, the interactions are initialized,
and particles are added. For this, the script makes use of the polymer command, which
provides a faster way to set up chain molecules.

The actual simulation falls apart again into two loops, the warmup loop with increasing
force capping, and the final simulation loop. Note that the electrostatic interaction is
only activated after equilibrating the excluded volume interactions, which speeds up the
warmup phase. However, depending on the problem, this splitted warmup may not be
possible due to physical restrictions. ESPResSo cannot detect these mistakes and it is
your responsibility to find simulation procedure suitable to your specific problem.

19

3. Getting, compiling and running
ESPResSo

This chapter will describe how to get, compile and run the ESPResSo software.

ESPResSo releases are available as source code packages from the ESPResSo home
page1. This is where new users should get the code. The code within release packages is
tested and known to run on a number of platforms. Alternatively, people that want to
use the newest features of ESPResSo or that want to start contributing to the software
can instead obtain the current development code via the version control system software
git2 from ESPResSo’s project page at the Savannah GNU server 3. This code might be
not as well tested and documented as the release code; it is recommended to use this
code only if you have already gained some experience in using ESPResSo.

Unlike most other software, no binary distributions of ESPResSo are available, and the
software is usually not installed globally for all users. Instead, users of ESPResSo should
compile the software themselves. The reason for this is that it is possible to activate
and deactivate various features before compiling the code. Some of these features are
not compatible with each other, and some of the features have a profound impact on
the performance of the code. Therefore it is not possible to build a single binary that
can satisfy all needs. A user should always activate only those features that are actually
needed. This means, however, that learning how to compile ESPResSo is a necessary
evil. The build system of ESPResSo uses the GNU autotools, which are developed since
more than 20 years and allow to compile software easily on a wide range of platforms.

3.1. Running configure

The first step of building ESPResSo is to run the shell script configure which is to be
found in the top level source directory. The script collects all the information required
by the compilation process. It will determine how to use and where to find the compiler,
as well as the different libraries and tools required by the compilation process, and it
will test what compiler flags are to be used. The script will find out about most of these
things automatically. If something is missing, it will complain and give hints how to
solve the problem. The generic syntax of calling the configure script is:

configure [options ...] [variable=value ...]

1http://espressomd.org
2http://git.org
3https://savannah.nongnu.org/projects/espressomd/

20

http://espressomd.org
http://git.org
https://savannah.nongnu.org/projects/espressomd/

If you are using the development source code from the git repository, before you
can call configure, it is necessary to have the GNU autotools (autoconf and automake)
installed. Then you can call the script bootstrap.sh from the top level source directory,
which will generate the configure script.

3.1.1. Source and build directories

Usually, when a program is compiled, the resulting binary files are put into the same
directory as the sources of the program. In ESPResSo’s build system, the source directory
that contains all the source files is completely separated from the build directory, where
the files created by the build process are put. The location of the build directory is the
current working directory at the time when configure is called. In this way, you can
build several variants of ESPResSo, each variant having different activated features, and
for as many platforms as you want. All further commands concerning compiling and
running ESPResSo have to be called from the build directory.

Example When the source directory is $srcdir (i.e. the files where unpacked to this
directory), then the build directory can be set to $builddir by calling the configure-
script from there:

cd $builddir

$srcdir/configure

make

Espresso

3.1.2. Options

The behaviour of configure can be controlled by the means of command line options.
In the following only those command line options that are specific to ESPResSo will be
explained. For a complete list of options and explanations thereof, call

configure --help

--with-myconfig=MYCONFIG_HEADER This option sets the name of the local configura-
tion header (see 3.4 on page 24). It defaults to “myconfig.h”.

--with-mpi=(yes | no | guess)/ --without-mpi By default, configure will auto-
matically determine whether an MPI compiler is available. If it is, it will use it. If
you specify --without-mpi or --with-mpi=no, then MPI will not be used, even if
it is available.

--with-efence / --without-efence Whether or not to use the “electric fence” mem-
ory debugging library. 4 Efence is not used by default.

4http://freshmeat.net/projects/efence/

21

http://freshmeat.net/projects/efence/

--with-tcl=TCL By default, configure will automatically determine which version of
Tcl is used. If the wrong version is chosen automatically, you can specify the name
of the library with this option, e.g. tcl8.4.

--with-tk=TK / --without-tk By default, the GUI toolkit Tk is not used by ESPResSo.
This option can be used to activate Tk and to specify which Tk version to use,
e.g. tk8.4. If you only specify --with-tk and do not give a version number,
configure will try to automatically deduce the right version.

--with-fftw / --without-fftw This can be used to specify whether the FFTW li-
brary is to be used, and which version. By default, version 3 will be used if it is
found, otherwise version 2 is used. Note that quite a number of central features of
ESPResSo require FFTW.

--with-cuda=path / --without-cuda This switch enables CUDA support. path should
be the path to the CUDA directory, which can be omitted if it is the NVIDIA de-
fault path, i.e. /usr/local/cuda. The variable NVCCFLAGS can be used to define
compiler flags for the NVIDIA CUDA-compiler nvcc. For example, NVCCFLAGS

= "-gencode arch=compute_20,code=sm_20" will compile code only for Fermi
cards. Default is to compile for compute models 1.1 and 2.0, i.e. everything with
a G90 chip or newer. Note that we require at least compute model 1.1.

3.2. make: Compiling, testing and installing ESPResSo

The command make is mainly used to compile the ESPResSo source code, but it can do
a number of other things. The generic syntax of the make command is:

make [options] [target...] [variable=value]

When no target is given, the target all is used. The following targets are available:

all Compiles the complete ESPResSo source code. The variable myconf can be used to
specify the name of the configuration header to be used.

check Runs the testsuite. By default, all available tests will be run on 1, 2, 3, 4, 6,
or 8 processors. Which tests are run can be controlled by means of the variable
tests, which processor numbers are to be used can be controlled via the variable
processors. Note that depending on your MPI installation, MPI jobs can only
be run in the queueing system, so that ESPResSo will not run from the command
line. In that case, you may not be able to run the testsuite, or you have to directly
submit the testsuite script testsuite/test.sh to the queueing system.
Example: make check tests="madelung.tcl" processors="1 2"

will run the test madlung.tcl on one and two processors.

clean Deletes all files that were created during the compilation.

22

mostlyclean Deletes most files that were created during the compilation. Will keep for
example the built doxygen documentation and the ESPResSo binary.

dist Creates a .tar.gz-file of the ESPResSo sources. This will include all source files
as they currently are in the source directory, i.e. it will include local changes. This
is useful to give your version of ESPResSo to other people. The variable extra can
be used to specify additional files and directories that are to be included in the
archive file.
Example: make dist extra="myconfig.h internal"

will create the archive file and include the file myconfig.h and the directory
internal with all files and subdirectories.

install Install ESPResSo. The variables prefix and exec-prefix can be used to
specify the installation directories, otherwise the defaults defined by the configure
script are used. prefix sets the prefix where all ESPResSo files are to be installed,
exec-prefix sets the prefix where the executable files are to be installed and is
required only when there is an architecture-specific directory.
Example: make install prefix=/usr/local

will install all files below /usr/local.

uninstall Uninstalls ESPResSo, i.e. removes all files that were installed during make

install. The variables are identical to the variables of the install-target.

ug Creates the User guide in the doc/ug subdirectory (only when using the develop-
ment sources).

dg Creates the Developers’ guide in the doc/dg subdirectory (only when using the
development sources).

doxygen Creates the Doxygen code documentation in the doc/doxygen subdirectory.

tutorials Creates the ESPResSo tutorials in the doc/tutorials subdirectory.

doc Creates all documentation in the doc subdirectory (only when using the develop-
ment sources).

A number of options are available when calling make. The most interesting option
is probably -j num_jobs , which can be used for parallel compilation on computers
that have more than one CPU or core. num jobs specifies the maximal number of jobs
that will be run. Setting num jobs to the number of available processors speeds up the
compilation process significantly.

3.3. Running ESPResSo

When ESPResSo is found in your path, it can be run via

Espresso [tcl script [args]]

23

When ESPResSo is called without any arguments, it is started in the interactive mode,
where new commands can be entered on the command line. When the name of a tcl -
script is given, the script is executed. N processors is the number of processors that
are to be used. Any further arguments are passed to the script. Note that depending
on your MPI installation, MPI jobs can only be run in the queueing system, so that
ESPResSo will not run from the command line.

3.4. myconfig.h: Activating and deactivating features

ESPResSo has a large number of features that can be compiled into the binary. However,
it is not recommended to actually compile in all possible features, as this will slow down
ESPResSo significantly. Instead, compile in only the features that are actually required.
A strong gain in speed can be achieved, by disabling all non-bonded interactions except
for a single one, e.g. LENNARD_JONES. For the developers, it is also possible to turn on or
off a number of debugging messages. The features and debug messages can be controlled
via a configuration header file that contains C-preprocessor declarations. Appendix B
on page 181 lists and describes all available features. When no configuration header is
provided by the user, a default header, found in src/myconfig-default.h, will be used
that turns on the default features. The file myconfig-sample.h in the source directory
contains a list of all possible features that can be copied into your own configuration file.

When you distinguish between the build and the source directory, the configuration
header can be put in either of these. Note, however, that when a configuration header
is found in both directories, the one in the build directory will be used.

By default, the configuration header is called myconfig.h. The name of the configu-
ration header can be changed either when the configure-script is called with the option
--with-myconfig (see section 3.1 on page 20), or when make is called with the setting
myconfig=myconfig header (see section 3.2 on page 22).

The configuration header can be used to compile different binary versions of ESPResSo
with a different set of features from the same source directory. Suppose that you have
a source directory $srcdir and two build directories $builddir1 and $builddir2 that
contain different configuration headers:

• $builddir1/myconfig.h:

#define ELECTROSTATICS

#define LENNARD-JONES

• $builddir2/myconfig.h:

#define LJCOS

Then you can simply compile two different versions of ESPResSo via

cd $builddir1

$srcdir/configure

make

24

cd $builddir2

$srcdir/configure

make

25

4. Setting up particles

4.1. part: Creating single particles

4.1.1. Defining particle properties

Syntax

part pid [pos x y z] [type typeid] [v vx vy vz] [f fx fy fz]
[bond bondid pid2 ...] [temp T] 9 [gamma g] 9 [q charge] 1

[quat q1 q2 q3 q4] 2 [omega x y z] 2 [torque x y z] 2

[rinertia x y z] 2 [[un]fix x y z] 3 [ext_force x y z] 3

[exclude pid2...] 4 [exclude delete pid2...] 4 [mass mass] 5

[dipm moment] 6 [dip dx dy dz] 6 [virtual v] 7,8

[vs_relative pid distance] 8 [vs_auto_relate_to pid] 8

Required features: 1 ELECTROSTATICS 2 ROTATION 3 EXTERNAL_FORCES 4 EXCLUSION
5 MASS 6 DIPOLES 7 VIRTUAL_SITES_COM 8 VIRTUAL_SITES_RELATIVE
9 LANGEVIN_PER_PARTICLE

Description

This command modifies particle data, namely position, type (monomer, ion, . . .), charge,
velocity, force and bonds. Multiple properties can be changed at once. If you add a new
particle the position has to be set first because of the spatial decomposition.

Arguments

• pid

• [pos x y z] Sets the position of this particle to (x, y, z).

• [type typeid] Restrictions: typeid ≥ 0.
The typeid is used in the inter command (see section 5 on page 42) to define the
parameters of the non bonded interactions between different kinds of particles.

• [v vx vy vz] Sets the velocity of this particle to (vx, vy, vz). The velocity remains
variable and will be changed during integration.

• [f fx fy fz] Set the force acting on this particle to (fx, fy, fz). The force remains
variable and will be changed during integration.

• [bond bondid pid2...] Restrictions: bondid ≥ 0; pid2 must be an existing parti-
cle. The bondid is used for the inter command to define bonded interactions.

• bond delete Will delete all bonds attached to this particle.

26

• [temp T] If used in combination with the Langevin thermostat (as documented in
section 6.2), sets the temperature T individually for the particle with id pid . This
allows to simulate systems containing particles of different temperatures. Caution:
this has no influence on any other thermostat then the Langevin thermostat.

• [gamma g] If used in combination with the Langevin thermostat (as documented
in section 6.2), sets the frictional coefficient T individually for the particle with id
pid . This allows to simulate systems containing particles with different diffusion
constants. Caution: this has no influence on any other thermostat then the
Langevin thermostat.

• [q charge] Sets the charge of this particle to q.

• [quat q1 q2 q3 q4] Sets the quaternion representation of the rotational position
of this particle.

• [omega x y z] Sets the rotational velocity of this particle in the particle’s co-
rotating frame.

• [torque x y z] Sets the rotational force of this particle, in global frame. When
printing the values using part id particle print, there is an alternative named [tbf]
which gives you the values of the torque in the body frame. Be aware: the values
obtained when printing using [torque] are computed in the frame laboratory and
are the ones one should usually look at. Nonetheless, in case you introduce
torques using [torque] option, espresso will assume they are given in the body-
frame. Thus [tbf] is useful to know which should be the numerical values you
should reintroduce in order to have exactly the same conformation.

• [rinertia x y z] Sets the diagonal elements of this particles rotational inertia
tensor. These correspond with the inertial moments along the coordinate axes in
the particle’s co-rotating coordinate system. When the particle’s quaternions are
set to 1 0 0 0, the co-rotating and the fixed (lab) frame are co-aligned.

• [fix x y z] Fixes the particle in space. By supplying a set of 3 integers as ar-
guments it is possible to fix motion in x , y , or z coordinates independently. For
example fix001 will fix motion only in z. Note that fix without arguments is
equivalent to fix111 .

• [ext_force x y z] An additional external force is applied to the particle.

• [unfix] Release any external influence from the particle.

• [exclude pid2...+] Restrictions: pid2 must be an existing particle. Between
the current particle an the exclusion partner(s), no nonbonded interactions are
calculated. Note that unlike bonds, exclusions are stored with both partners.
Therefore this command adds the defined exclusions to both partners.

• [exclude delete pid2...] Searches for the given exclusion and deletes it. Again
deletes the exclusion with both partners.

27

• [mass mass] Sets the mass of this particle to mass. If not set, all particles have
a mass of 1 in reduced units.

• [dipm moment] Sets the dipol moment of this particle to moment.

• [dip dx dy dz] Sets the orientation of the dipol axis to (dx, dy, dz).

• [virtual v] Declares the particles as virtual (1) or non-virtual (0, default). Please
read chapter 4.4 before using virtual sites.

• [vs_auto_relate_to pid] Automatically relates a virtual site to a non-virtual
particle for the “relative” implementation of virtual sites. pid is the id of the
particle to which the virtual site should be related.

• [vs_relative pid distance] Allows for manual access to the attributes of virtual
sites in the “relative” implementation. pid denotes the id of the particle to which
this virtual site is related and distance the distance between non-virtual and
virtual particle.

4.1.2. Getting particle properties

Syntax

(1) part pid print [(id | pos | type | folded_position | type | q | v | f
| fix | ext_force | bond | connections [range])]...

(2) part

Description
Variant (1) will return a list of the specified properties of particle pid , or all properties,
if no keyword is specified. Variant (2) will return a list of all properties of all particles.

Example
part 40 print id pos q bonds

will return a list like

40 8.849 1.8172 1.4677 1.0 {}

This routine is primarily intended for effective use in Tcl scripts.

When the keyword connection is specified, it returns the connectivity of the
particle up to range (defaults to 1). For particle 5 in a linear chain the result up to
range = 3 would look like:

{ { 4 } { 6 } } { { 4 3 } { 6 7 } } { {4 3 2 } { 6 7 8 } }

The function is useful when you want to create bonded interactions to all other particles
a certain particle is connected to. Note that this output can not be used as input to the
part command. Check results if you use them in ring structures.

If none of the options is specified, it returns all properties of the particle, if it
exists, in the form

28

0 pos 2.1 6.4 3.1 type 0 q -1.0 v 0.0 0.0 0.0 f 0.0 0.0 0.0

bonds { {0 480} {0 368} ... }

which may be used as an input to this function later on. The first integer is the particle
number.

Variant (2) returns the properties of all stored particles in a tcl-list with the same
format as specified above:

{0 pos 2.1 6.4 3.1 type 0 q -1.0 v 0.0 0.0 0.0 f 0.0 0.0 0.0

bonds{{0 480}{0 368}...}}

{1 pos 1.0 2.0 3.0 type 0 q 1.0 v 0.0 0.0 0.0 f 0.0 0.0 0.0

bonds{{0 340}{0 83}...}}

{2...{{...}...}}

{3...{{...}...}}

...

4.1.3. Deleting particles

Syntax

(1) part pid delete

(2) part deleteall

Description
In variant (1), the particle pid is deleted and all bonds referencing it. Variant (2)
will delete all particles currently present in the simulation. Variant (3) will delete all
currently defined exclusions.

4.1.4. Exclusions

Syntax

(1) part auto_exclusions [range]
(2) part delete_exclusions

Required features: EXCLUSIONS

Description
Variant (1) will create exclusions for all particles pairs connected by not more than
range bonds (range defaults to 2). This is typically used in atomistic simulations, where
nearest and next nearest neighbour interactions along the chain have to be omitted since
they are included in the bonding potentials. For example, if the system contains particles
0 . . . 100, where particle n is bonded to particle n− 1 for 1 ≤ n ≤ 100, then it will result
in the exclusions:

• particle 1 does not interact with particles 2 and 3

• particle 2 does not interact with particles 1, 3 and 4

• particle 3 does not interact with particles 1, 2, 4 and 5

29

• ...

Variant (2) deletes all exclusions currently present in the system.

4.2. Creating groups of particle

4.2.1. polymer: Setting up polymer chains

Syntax
polymer num polymers monomers per chain bond length

[start pid] [pos x y z] [mode (RW | SAW | PSAW) [shield [trymax]]]
[charge q] 1 [distance dcharged] 1 [types typeidneutral [typeidcharged]]

[bond bondid] [angle φ [θ [x y z]]] [constraints] 2

Required features: 1 ELECTROSTATICS 2 CONSTRAINTS

Description
This command will create num polymers polymer or polyelectrolyte chains with monomers per chain
monomers per chain. The length of the bond between two adjacent monomers will be
set up to be bond length.

Arguments
•num polymers Sets the number of polymer chains.

•monomers per chain Sets the number of monomers per chain.

• bond length Sets the initial distance between two adjacent monomers. The dis-
tance during the course of the simulation depends on the applied potentials. For
fixed bond length please refer to the Rattle Shake algorithm[2]. The algorithm is
based on Verlet algorithm and satisfy internal constraints for molecular models
with internal constrains, using Lagrange multipliers.

• [start pid] Sets the particle number of the start monomer to be used with the
part command. This defaults to 0.

• [pos x y z] Sets the position of the first monomer in the chain to x , y , z (defaults
to a randomly chosen value)

• [mode (RW | PSAW | SAW) [shield [trymax]]] Selects the setup mode:

RW (Random walk) The monomers are randomly placed by a random walk with
a steps size of bondl ength.

PSAW (Pruned self-avoiding walk) The position of a monomer is randomly cho-
sen in a distance of bond length to the previous monomer. If the position is
closer to another particle than shield , the attempt is repeated up to trymax

times. Note, that this is not a real self-avoiding random walk, as the particle
distribution is not the same. If you want a real self-avoiding walk, use the
SAW mode. However, PSAW is several orders of magnitude faster than SAW,
especially for long chains.

30

SAW (Self-avoiding random walk) The positions of the monomers are chosen as
in the plain random walk. However, if this results in a chain that has a
monomer that is closer to another particle than shield , a new attempt of
setting up the whole chain is done, up to trymax times.

The default for the mode is RW, the default for the shield is 1.0, and the default
for trymax is 30000, which is usually enough for PSAW. Depending on the length
of the chain, for the SAW mode, trymax has to be increased by several orders of
magnitude.

• [charge valency] Sets the valency of the charged monomers. If the valency of
the charged polymers valency is smaller than 10−10, the charge is assumed to be
zero, and the types are set to typeidcharged = typeidneutral. If charge is not set, it
defaults to 0.0.

• [distance dcharged] Sets the stride between the indices of two charged monomers.
This defaults defaults to 1, meaning that all monomers in the chain are charged.

• [types typeidneutral typeidcharged] Sets the type ids of the neutral and charged
monomer types to be used with the part command. If only typeidneutral is defined,
typeidcharged defaults to 1. If the option is omitted, both monomer types default
to 0.

• [bond bondid] Sets the type number of the bonded interaction to be set up between
the monomers. This defaults to 0. Any bonded interaction, no matter how many
bonding-partners needed, is stored with the second particle in this bond. See
chapter 5.3.

• [angle φ [θ [x y z]]] Allows for setting up helices or planar polymers: φ and
theta are the angles between adjacent bonds. x , y and z set the position of the
second monomer of the first chain.

• [constraints] If this option is specified, the particle setup-up tries to obey pre-
viously defined constraints (see section 4.3 on page 36).

4.2.2. counterions: Setting up counterions

Syntax
counterions N [start pid] [mode (SAW | RW) [shield [trymax]]]

[charge val] 1 [type typeid]

Required features: 1 ELECTROSTATICS

Description
This command will create N counterions in the simulation box.

Arguments
• [start pid] Sets the particle id of the first counterion. It defaults to the cur-

rent number of particles, i.e. counterions are placed after all previously defined
particles.

31

• [mode (SAW | RW) [shield [trymax]]] Specifies the setup method to place the
counterions. It defaults to SAW. See the polymer command for a detailed descrip-
tion.

• [charge val] Specifies the charge of the counterions. If not set, it defaults to −1.0.

• [type typeid] Specifies the particle type of the counterions. It defaults to 2.

4.2.3. salt: Setting up salt ions

Syntax

salt N+ N− [start pid] [mode (SAW | RW) [shield [trymax]]]
[charges val+ [val−]] 1 [types typeid+ [typeid−]] [rad r]

Required features: 1 ELECTROSTATICS

Description
Create N+ positively and N− negatively charged salt ions of charge val+ and val− within
the simulation box.

Arguments
• [start pid] Sets the particle id of the first (positively charged) salt ion. It defaults

to the current number of particles.

• [mode (SAW | RW) [shield [trymax]]] Specifies the setup method to place the
counterions. It defaults to SAW. See the polymer command for a detailed descrip-
tion.

• [charge val+ [val−]] Sets the charge of the positive salt ions to val+ and the one
of the negatively charged salt ions to val−. If not set, the values default to 1.0
and −1.0, respectively.

• [type typeid+ [typeid−]] Specifies the particle type of the salt ions. It defaults to
3 respectively 4.

• [rad r] The salt ions are only placed in a sphere with radius r around the origin.

4.2.4. diamond: Setting up diamond polymer networks

Syntax

diamond a bond length monomers per chain [counterions NCI]
[charges valnode valmonomer valCI]

1 [distance dcharged] 1 [nonet]

Required features: 1 ELECTROSTATICS

Description
Creates a diamond-shaped polymer network with 8 tetra-functional nodes connected by
2 ∗ 8 polymer chains of length monomers per chain in a unit cell of length a. Chain
monomers are placed at a mutual distance bond length along the vector connecting

32

network nodes. The polymer is created starting from particle ID 0. Nodes are assigned
type 0, monomers (both charged and uncharged) are type 1 and counterions type 2. For
inter-particle bonds interaction 0 is taken which must be a two-particle bond.

Figure 4.1.: Diamond-like polymer network with monomers per chain=15.

Arguments

• a Determines the size of the of the unit cell.

• bond length Specifies the bond length of the polymer chains connecting the 8
tetra-functional nodes.

•monomers per chain Sets the number of chain monomers between the functional
nodes.

• [counterions NCI] Adds NCI counterions to the system.

• [charges valnode valmonomer valCI] Sets the charge of the nodes to valnode, the
charge of the connecting monomers to valmonomer, and the charge of the counte-
rions to valCI.

• [distance dcharged] Specifies the distance between charged monomers along the
interconnecting chains. If dcharged > 1 the remaining chain monomers are un-
charged.

• [nonet] Do not create bonds between the chains.

33

4.2.5. icosaeder: Setting up an icosaeder

Syntax

icosaeder a monomers per chain [counterions NCI]
[charges valmonomers valCI]

1 [distance dcharged] 1

Required features: 1 ELECTROSTATICS

Description

Creates a modified icosaeder to model a fullerene (or soccer ball). The edges are modeled
by polymer chains connected at the corners of the icosaeder. For inter-particle bonds
interaction 0 is taken which must be a two-particle bond. Two particle types are used
for the pentagons and the interconnecting links. For an example, see figure 4.2.

Figure 4.2.: Icosaeder with monomers per chain=15.

Arguments

• a Length of the links. Defines the size of the icosaeder.

•monomers per chain Specifies the number of chain monomers along one edge.

• [counterions NCI] Specifies the number of counterions to be placed into the sys-
tem.

• [charges valmonomers valCI] Set the charges of the monomers to valmonomers and
the charges of the counterions to valCI.

• [distance dcharged] Specifies the distance between two charged monomer along
the edge. If dcharged > 1 the remaining monomers are uncharged.

34

4.2.6. crosslink: Cross-linking polymers

Syntax
crosslink num polymer monomers per chain [start pid] [catch rcatch]

[distLink link dist] [distChain chain dist] [FENE bondid]
[trials trymax]

Description
Attempts to end-crosslink the current configuration of num polymer equally long poly-
mers with monomers per chain monomers each, returning how many ends are success-
fully connected.

Arguments
• [start pid] pid specifies the first monomer of the chains to be linked. It has to

be specified if the polymers do not start at id 0.

• [catch rcatch] Set the radius around each monomer which is searched for possible
new monomers to connect to. rcatch defaults to 1.9.

• [distLink link dist] The minimal distance of two interconnecting links. It de-
faults to 2.

• [distChain chain dist] The minimal distance for an interconnection along the
same chain. It defaults to 0. If set to monomers per chain, no interchain con-
nections are created.

• [FENE bondid] Sets the bond type for the connections to bondid .

• [trials trymax] If not specified, trymax defaults to 30000.

4.2.7. copy_particles: copying a set of particles

Syntax

copy_particles [set id1 id2 ...| range from to ...] [shift s x s y s z]

Description
Copy a group of particles including their bonds. Positions can be [shift]ed by an offset
(s x , s y , s z), otherwise the copied set is at exactly the same position as the original
set. The particles can be given as a combination of [list]s or [range]s. The new particles
obtain in any case consecutive identities after the largest current identity. Bonds within
the defined particle set are copied with translated identities, but not bonds with particles
outside the list. That is, if the particle set corresponds to a molecule, intramolecular
bonds are preserved, but not intermolecular ones.

Examples of use:

copy_particles set {1 2 3 4} shift 0.0 0.0 0.0

copy_particles set {1 2} set {3 4}

copy_particles range 1 4

35

All these examples do the same - making exact copies of particles 1 through 4.

4.3. constraint: Setting up constraints

Syntax

(1) constraint wall normal nx ny nz dist d type id [penetrable flag]
[reflecting flag]

(2) constraint sphere center cx cy cz radius rad direction direction
type id [penetrable flag] [reflecting flag]

(3) constraint cylinder center cx cy cz axis nx ny nz radius rad
length length direction direction type id [penetrable flag]
[reflecting flag]

(4) constraint rhomboid corner px py pz a ax ay az b bx by bz

c cx cy cz direction direction type id [penetrable flag]
[reflecting flag]

(5) constraint maze nsphere n dim d sphrad rs cylrad rc type id
[penetrable flag]

(6) constraint pore center cx cy cz axis nx ny nz radius rad length

length type id
(7) constraint rod center cx cy lambda lambda 1

(8) constraint plate height h sigma sigma 1

(9) constraint ext_magn_field fx fy fz
2,3

(10) constraint plane cell x y z type id
(11) constraint mindist_position x y z

Required features: CONSTRAINTS 1 ELECTROSTATICS 2 ROTATION 3 DIPOLES

Description

The constraint command offers a variety of surfaces that can be defined to interact with
desired particles. Variants (1) to (6) create interactions via a non-bonded interaction
potential, where the distance between the two particles is replaced by the distance of
the center of the particle to the surface. The constraints are identified like a particle
via its type for the non-bonded interaction. After a type is defined for each constraint
one has to define the interaction of all different particle types with the constraint using
the inter command. In variants (1) to (5), constraints are able to be penetrated if flag
is set to 1. Otherwise, when the penetrable option is ignored or flag is set to 0, the
constraint cannot be violated, i.e. no particle can go through the constraint surface. In
variants (1) to (4) it is also possible to specify a flag indicating if the constraints should
be reflecting. The flags can equal 1 or 2. The flag 1 corresponds to a reflection process
where the normal component of the velocity is reflected and the tangential component
remains unchanged. If the flag is 2, also the tangential component is turned around, so
that a bounce back motion is performed. The second variant is useful for boundaries
of DPD. The reflection property is only activated if an interaction is defined between a
particular particle and the constraint! This will usually be a lennard-jones interaction

36

with ε = 0, but finite interaction range.
Variants (7) and (8) create interactions based on electrostatic interactions. The cor-

responding force acts in direction of the normal vector of the surface and applies to all
charged particles.

Variant (9) does not define a surface but is based on magnetic dipolar interaction with
an external magnetic field. It applies to all particles with a dipol moment.

Variant (10) is essential for the use of tunable-slip boundary interactions for mi-
crochannel flows like the Plane Poiseuille or Plane Couette Flow.

Variant (11) calculates the smallest distance to all non-penetrable constraints, that
can be repulsive (wall, cylinder, sphere, rhomboid, maze, pore). Negative distances mean
that the position is “within” the area that particles should not access. Helpful to find
initial configurations.)
Note that constraints are not saved to checkpoints and that they have to

be reset upon restarting a simulation.
The resulting surface in variant (1) is a plane defined by the normal vector nx ny nz

and the distance d from the origin. The force acts in direction of the normal. Note
that the d describes the distance from the origin in units of the normal vector so that
the product of d and n is a point on the surface. Therefore negative distances are quite
common!

The resulting surface in variant (2) is a sphere with center cx cy cz and radius rad .
The direction determines the force direction, -1 or [inside] for inward and +1 or [outside]
for outward.

The resulting surface in variant (3) is a cylinder with center cx cy cz and radius rad .
The length parameter is half of the cylinder length. The axis is a vector along the
cylinder axis, which is normalized in the program. The direction is defined the same
way as for the spherical constraint.

The resulting surface in variant (4) is a rhomboid, defined by one corner located at
px py pz and three adjacent edges, a (ax ay az), b (bx by bz) and c (cx cy cz).

The resulting surface in variant (5) is n spheres of radius rs along each dimension,
connected by cylinders of radius rc . The spheres have simple cubic symmetry. The
spheres are distributed evenly by dividing the boxl by n. Dimension of the maze can be
controlled by d : 0 for one dimensional, 1 for two dimensional and 2 for three dimensional
maze.

Variant (6) sets up a cylindrical pore similar to variant (3) with a center cx cy cz and
radius rad . The length parameter is half of the cylinder length. The axis is a vector
along the cylinder axis, which is normalized in the program. The argument radius rad
can be replaced by the argument radii rad1 rad2 to obtain a pore with a conical
shape and corresponding opening radii. The first radius is in the direction opposite to
the axis vector.

Variant (7) specifies an electrostatic interaction between the charged particles in the
system to an infinitely long rod with a line charge of lambda which is alinge along the
z-axis and centered at cx and cy .

Variant (8) specifies the electrostatic interactinos between the charged particles in the
system and an inifinitely large plate in the x-y-plane at height h. The plate carries a

37

charge density of sigma.

Variant (9) specifies the dipolar coupling of particles with a dipolar moment to an
external field fx fy fz .

Variant (10) creates an infinite plane at a fixed position. For non-initializing a direc-
tion of the constraint values of the positions have to be negative. For the tunable-slip
boundary interactions you have to set two constraints.

Example
To create an infinite plane in z-direction at z = 20.0 of type id 1, use:

constraint plane cell -10 -10 20 type 1

4.3.1. Deleting a constraint

Syntax

constraint delete [num]

Description
This command will delete constraints. If num is specified only this constraint will
deleted, otherwise all constraints will be removed from the system.

4.3.2. Getting the force on a constraint

Syntax

constraint force n

Description
Returns the force acting on the nth constraint.

4.3.3. Getting the currently defined constraints

Syntax

constraint [num]

Description
Prints out all constraint information. If num is specified only this constraint is displayed,
otherwise all constraints will be printed.

4.4. Virtual sites

Virtual sites are particles, the positions and velocities of which are not obtained by
integrating an equation of motion. Rather, their coordinates are obtained from the
position (and orientation) of one or more other particles. In this way, rigid arrangements
of particles can be constructed and a particle can be placed in the center of mass of a set

38

of other particles. Virtual sites can interact with other particles in the system by means
of interactions. Forces are added to them according to their respective particle type.
Before the next integration step, the forces accumulated on a virtual site are distributed
back to those particles, from which the virtual site was derived.

There are two distinct types of virtual sites, decribed in the following.

4.4.1. Virtual sites in the center of mass of a molecule

To activate this implementation, enable the feature VIRTUAL_SITES_COM in myconfig.h

(sec. 3.4). Virtual sites are then placed in the center of mass of a set of particles (as
defined below). Their velocity will also be that of the center of mass. Forces accumulating
on the virtual sites are distributed back to the particles which form the molecule. To
place a virtual site at the center of a molecule, perform the following steps in that order

1. Create a particle of the desired type for each molecule. It should be placed at least
roughly in the center of the molecule to make sure, it’s on the same node as teh
other particles forming the molecule, in a simulatino with more than one cpu.

2. Make it a virtual site using

part pid virtual 1

3. Declare the list of molecules and the particles they consist of:

analyze set {molid {listofparticleids..} ...}
The lists of particles in a molecule comprise the non-virtual particles and the vir-
tual site.

4. Assign to all particles that belong to the same molecule a common molecule id

part pid mol molid

5. Update the position of all virtual particles (optional)

integrate 0

4.4.2. Rigid arrangements of particles

The “relative” implementation of virtual sites allows for the simulation of rigid arrange-
ments of particles. It can be used, e.g., for extended dipoles and raspberry-particles, but
also for more complex configurations. Position and velocity of a virtual site are obtained
from the position and orientation of exactly one non-virtual particle, which has to be
placed in the center of mass of the rigid body. Several virtual sites can be related to one
and the same non-virtual particle. The position of the virtual site is given by

~xv = ~xn +On(Ov ~Ez)d, (4.1)

where ~xn is the position of the non-virtual particle, On is the orientation of the non-
virtual particle, Ov denotes the orientation of the vector ~xv− ~xn with respect to the non-
virtual particle’s body fixed frame and d the distance between virtual and non-virtual

39

particle. In words: The virtual site is placed at a fixed distance from the non-virtual
particle. When the non-virtual particle rotates, the virtual sites rotates on an orbit
around the non-virtual particle’s center.

To use this implementation of virtual sites, activate the feature VIRTUAL_SITES_-

RELATIVE in myconfig.h (see sec. 3.4). To set up a virtual site,

1. Place the particle to which the virtual site should be related. It needs to be in the
center of mass of the rigid arrangement of particles you create. Let its particle id
be n.

2. Place a particle at the desired relative position, make it virtual and relate it to the
first particle

part v pos pos virtual 1 vs_auto_relate n

3. Repeat the previous step with more virtual sites, if desired.

4. To update the positions of all virtual sites, call

integrate 0

Please note:

• The relative position of the virtual site is defined by its distance from the non-
virtual particle, the id of the non-virtual particle and a quaternion which defines
the vector from non-virtual particle to virtual site in the non-virtual particle’s
body-fixed frame. The first two are saved in the virtual site’s vs relative-attribute,
while the latter is saved in the quaternion attribute. Take care, not to overwrite
these after using vs auto relate.

• Virtual sites can not be placed relative to other virtual sites, as the order in which
the positions of virtual sites are updated is not guaranteed. Always relate a virtual
site to a non-virtual particle placed in the center of mass of the rigid arrangement
of particles.

• Don’t forget to declare the particle virtual in addition to calling vs auto relate

• In case you know the correct quaternions, you can also setup a virtual site using

part v virtual 1 quat q vs_relative n d

where n is the id of the non-virtual particle and d is its distance from the virtual
site.

• In a simulation on more than one CPU, the effective cell size needs to be larger
than the largest distance between a non-virtual particle and its associated virtual
sites. To this aim, you need to set the global variable min global cut to this
largest distance. ESPResSo issues a warning when creating a virtual site with
vs_auto_relate_to and the cutoff is insufficient.

• If the virtual sites represent actual particles carrying a mass, the inertia tensor of
the non-virtual particle in the center of mass needs to be adapted.

40

4.4.3. Additional features

The behaviour of virtual sites can be fine-tuned with the following switches in myconfig.h

(sec.3.4)

• VIRTUAL_SITES_NO_VELOCITY specifies that the velocity of virtual sites is not com-
puted

• VIRTUAL_SITES_THERMOSTAT specifies that the Langevin thermostat should also
act on virtual sites

• THERMOSTAT_IGNORE_NON_VIRTUAL specifies that the thermostat does not act on
non-virtual particles

41

5. Setting up interactions

In ESPResSo, interactions are set up and investigated by the inter command. There
are mainly two types of interactions: non-bonded and bonded interactions. Non-bonded
interactions only depend on the type of the two involved particles. This also applies to
the electrostatic interaction; however, due to its long-ranged nature, it requires special
care and ESPResSo handles it separately with a number of state-of-the-art algorithms.
The particle type and the charge are both defined using the part command.

A bonded interaction defines an interaction between a number of specific particles;
it only applies to the set of particles for which it has been explicitely set. A bonded
interaction between a set of particles has to be specified explicitely by the part bond

command, while the inter command is used to define the interaction parameters.

Syntax

inter

Description

Without any arguments, inter returns a list of all defined interactions as a Tcl-
list. The format of each entry corresponds to the syntax for defining the interaction
as described below. Typically, this list looks like

{0 0 lennard-jones 1.0 2.0 1.1225 0.0 0.0} {0 FENE 7.0 2.0}

5.1. Isotropic non-bonded interactions

Syntax

inter type1 type2 [interaction] [parameters]

Description

This command defines an interaction of type interaction between all particles of type
type1 and type2 . The possible interaction types and their parameters are listed
below. If the interaction is omitted, the command returns the currently defined
interaction between the two types using the syntax to define the interaction, e.g.

0 0 lennard-jones 1.0 2.0 1.1225 0.0 0.0

For many non-bonded interactions, it is possible to artificially cap the forces, which
often allows to equilibrate the system much faster. See the subsection 5.8.5 for details.

42

5.1.1. Tabulated interaction

Syntax

inter type1 type2 tabulated filename

Required features: TABULATED

Description

This defines an interaction between particles of the types type1 and type2 according
to an arbitrary tabulated pair potential. filename specifies a file which contains the
tabulated forces and energies as a function of the separation distance. The tabulated
potential allows capping the force using inter tabforcecap, see section 5.8.5.

At present the required file format is simply an ordered list separated by whitespace.
The data reader first looks for a # character and begins reading from that point in the
file. Anything before the # will be ignored.

The first three parameters after the # specify the number of data points Npoints and
the minimal and maximal tabulated separation distances rmin and rmax. The number
of data points obviously should be an integer, the two other can be arbitrary positive
doubles. Take care when choosing the number of points, since a copy of each lookup table
is kept on each node and must be referenced very frequently. The maximal tabulated
separation distance also acts as the effective cutoff value for the potential.

The remaining data in the file should consist of n data triples r, F (r) and V (r). r gives
the particle separation, V (r) specifies the interaction potential, and F (r) = −V ′(r)/r
the force (note the factor 1/r!). The values of r are assumed to be equally distributed
between rmin and rmax with a fixed distance of (rmax − rmin)/(Npoints − 1); the distance
values r in the file are ignored and only included for human readability.

5.1.2. Lennard-Jones interaction

Syntax

inter type1 type2 lennard-jones ε σ rcut [(cshift|auto) [roff [rcap [rmin]]]]

Required features: LENNARD_JONES

Description

This command defines the traditional (12-6)-Lennard-Jones interaction between particles
of the types type1 and type2 . The potential is defined by

VLJ(r) =

{
4ε((σ

r−roff
)12 − (σ

r−roff
)6 + cshift) , if rmin + roff < r < rcut + roff

0 , otherwise
. (5.1)

The traditional Lennard–Jones potential is the “work–horse” potential of particle–
particle interactions in coarse–grained simulations. It is a simple model of the van–der–
Waals interaction, and is attractive at large distance, but strongly repulsive at short
distances. roff +σ corresponds to the sum of the radii of the interaction particles; at this
radius, VLJ(r) = 4εcshift. The minimum of the potential is at r = roff + 2

1
6σ. At this

43

value of r, VLJ(r) = −ε+ 4εcshift. The attractive part starts beyond this value of r . rcut

determines the radius where the potential is cut off.

If cshift is not set or it is set to the string auto, the shift will be automatically computed
such that the potential is continuous at the cutoff radius. If roff is not set, it is set to 0.

The total force on a particle can be capped by using the command inter ljforcecap,
see section 5.8.5, or on an individual level using the rcap variable. When rcap is set
and inter ljforcecap individual has been issued before, the maximal force that is
generated by this potential is the force at rcap. By default, force capping is off, i.e. the
cap radius is set to 0.

An optional additional parameter can be used to restrict the interaction from a min-
imal distance rmin. This is an optional parameter, set to 0 by default.

A special case of the Lennard–Jones potential is the Weeks–Chandler–Andersen (WCA)
potential, which one obtains by putting the cutoff into the minimum, i.e. choosing
rcut = 2

1
6σ. The WCA potential is purely repulsive, and is often used to mimick hard

sphere repulsion.

5.1.3. Generic Lennard-Jones interaction

Syntax

inter type1 type2 lj-gen ε σ rcut cshift roff e1 e2 b1 b2 [(rcap|auto)]

Required features: LENNARD_JONES_GENERIC

Description

This command defines a generalized version of the Lennard-Jones interaction (see section
5.1.2) between particles of the types type1 and type2 . The potential is defined by

VLJ(r) =

{
ε(b1 (σ

r−roff
)e1 − b2 (σ

r−roff
)e2 + cshift) , if rmin + roff < r < rcut + roff

0 , otherwise
.

(5.2)
Note that the prefactor 4 of the standard LJ potential is missing, so the normal LJ
potential is recovered for b1 = b2 = 4, e1 = 12 and e2 = 6.

The total force on a particle can be capped by using the command inter ljforcecap,
see section 5.8.5, or on an individual level using the rcap variable. When rcap is set
and inter ljforcecap individual has been issued before, the maximal force that is
generated by this potential is the force at rcap. By default, force capping is off, i.e. the
cap radius is set to 0.

5.1.4. Lennard-Jones cosine interaction

Syntax

(1) inter type1 type2 lj-cos ε σ rcut roff

(2) inter type1 type2 lj-cos2 ε σ roff ω

Required features: (1) LJCOS (2) LJCOS2

44

Description
specifies a Lennard-Jones interaction with cosine tail [46] between particles of the types
type1 and type2 . The first variant behaves as follows: Until the minimum of the Lennard-
Jones potential at rmin = roff + 2

1
6σ, it behaves identical to the unshifted Lennard-Jones

potential (cshift = 0). Between rmin and rcut, a cosine is used to smoothly connect the
potential to 0, i.e.

V (r) =
1

2
ε
(
cos
[
α(r − roff)2 + β

]
− 1
)
, (5.3)

where α = π
[
(rcut − roff)2 − (rmin − roff)2

]−1
and β = π − (rmin − roff)2 α.

In the second variant, the cutoff radius is rcut = rmin + ω, where rmin = roff + 2
1
6σ as

in the first variant. The potential between rmin and rcut is given by

V (r) = ε cos2
[π

2ω
(r − rmin)

]
. (5.4)

For r < rmin, V (r) is implemented as normal Lennard-Jones potential, see equation 5.1
with cshift = 0.

Only the second variant allows capping the force using inter ljforcecap, see sec-
tion 5.8.5.

5.1.5. Smooth step interaction

Syntax
inter type1 type2 smooth-step σ1 n ε k0 σ2 rcut

Required features: SMOOTH_STEP

Description
This defines a smooth step interaction between particles of the types type1 and type2 ,
for which the potential is

V (r) = (σ1/d)n + ε/(1 + exp [2k0(r − σ2)]) (5.5)

for r < rcut , and V (r) = 0 elsewhere. With n around 10, the first term creates a short
range repulsion similar to the Lennard-Jones potential, while the second term provides
a much softer repulsion. This potential therefore introduces two length scales, the range
of the first term, σ1, and the range of the second one, σ2, where in general σ1 < σ2.

5.1.6. BMHTF potential

Syntax
inter type1 type2 bmhtf-nacl A B C D σ rcut

Required features: BMHTF_NACL

Description
This defines an interaction with the short-ranged part of the Born-Meyer-Huggins-Tosi-
Fumi potential between particles of the types type1 and type2 , which is often used to

45

simulate NaCl crystals. The potential is defined by:

V (r) = A exp [B(σ − r)]− Cr−6 −Dr−8 + εshift, (5.6)

where εshift is chosen such that V (rcut) = 0. For r ≥ rcut, the V (r) = 0.
For NaCl, the parameters should be chosen as follows:

types A (kJ/mol) B (Å−1) C (Å6kJ/mol) D Å8kJ/mol σ (Å)

Na-Na 25.4435 3.1546 101.1719 48.1771 2.34
Na-Cl 20.3548 3.1546 674.4793 837.0770 2.755
Cl-Cl 15.2661 3.1546 6985.6786 14031.5785 3.170

The cutoff can be chosen relatively freely because the potential decays fast; a value
around 10 seems reasonable.

In addition to this short ranged interaction, one needs to add a Coulombic, long–
ranged part. If one uses elementary charges, i.e. a charge of q = +1 for the Na–particles,
and q = −1 for the Cl–particles, the corresponding prefactor of the Coulomb interaction
is ≈ 1389.3549Å kJ/mol.

5.1.7. Morse interaction

Syntax
inter type1 type2 morse ε α rmin rcut

Required features: MORSE

Description
This defines an interaction using the Morse potential between particles of the types
type1 and type2 . It serves similar purposes as the Lennard-Jones potential, but has a
deeper minimum, around which it is harmonic. This models the potential energy in a
diatomic molecule. This potential allows capping the force using inter morseforcecap,
see section 5.8.5.

For r < rcut, this potential is given by

V (r) = ε (exp [−2α (r − rmin)]− 2 exp [−α (r − rmin)])− εshift, (5.7)

where εshift is again chosen such that V (rcut) = 0. For r ≥ rcut, the V (r) = 0.

5.1.8. Buckingham interaction

Syntax
inter type1 type2 buckingham A B C D rcut rdiscont εshift

Required features: BUCKINGHAM

Description
This defines a Buckingham interaction between particles of the types type1 and type2 ,
for which the potential is given by

V (r) = A exp(−Br)− Cr−6 −Dr−4 + εshift (5.8)

46

for rdiscont < r < rcut. Below rdiscont, the potential is linearly continued towards r = 0,
similarly to force capping, see below. Above r = rcut, the potential is 0. This potential
allows capping the force using inter buckforcecap, see section 5.8.5.

5.1.9. Soft-sphere interaction

Syntax

inter type1 type2 soft-sphere a n rcut roffset

Required features: SOFT_SPHERE

Description

This defines a soft sphere interaction between particles of the types type1 and type2 ,
which is defined by a single power law:

V (r) = a (r − roffset)
−n (5.9)

for r < rcut, and V (r) = 0 above. There is no shift implemented currently, which means
that the potential is discontinuous at r = rcut. Therefore energy calculations should be
used with great caution.

5.1.10. Hertzian interaction

Syntax

inter type1 type2 hertzian σ ε

Required features: HERTZIAN

Description

This defines an interaction according to the Hertzian potential between particles of the
types type1 and type2 . The Hertzian potential is defined by

V (r) =

{
ε
(
1− r

σ

)5/2
r < σ

0 r ≥ σ.
(5.10)

The potential has no singularity and is defined everywhere; the potential has nondiffer-
entiable maximum at r = 0, where the force is undefined.

5.2. Anisotropic non-bonded interactions

5.2.1. Directional Lennard-Jones interaction

Syntax

inter type1 type2 lj-angle ε σ rcut b1a b1b b2a b2b [rcap z0 δz κ ε′]

Required features: LJ_ANGLE

47

Description

���
���
���

���
���
���

����
����
����

����
����
����

Specifies a 12-10 Lennard-Jones interaction with angular dependence between particles
of the types type1 and type2 . These two particles need two bonded partners oriented
in a symmetric way. They define an orientation for the central particle. The purpose of
using bonded partners is to avoid dealing with torques, therefore the interaction does not
need the ROTATION feature. The angular part of the potential minimizes the system
when the two central beads are oriented along the vector formed by these two particles.
The shaded beads on the image are virtual particles that are formed from the orientation
of the bonded partners, connected to the central beads. They are used to define angles.
The potential is of the form

U(rik, θjik, θikn) = ε

[
5
(σ
r

)12
− 6

(σ
r

)10
]

cos2 θjik cos2 θikn, (5.11)

where rik is the distance between the two central beads, and each angle defines the
orientation between the direction of a central bead (determined from the two bonded
partners) and the vector rik. Note that the potential is turned off if one of the angle
is more than π/2. This way we don’t end up creating a minimum for an anti-parallel
configuration.

Unfortunately, the bonded partners are not seeked dynamically. One has to keep track
of the relative positions of the particle IDs. This can be done by setting the parameters
b1a , b1b , b2a , and b2b . Say the first bead type1 has particle ID n, then one should set
the simulation such as its two bonded partners have particle IDs n + b1a and n + b1b ,
respectively. On a linear chain, for example, one would typically have b1a = 1 and
b1b = −1 such that the central bead and its two bonded partners have position IDs n,
n + 1 , and n − 1 , respectively. This is surely not optimized, but once the simulation is
set correctly the algorithm is very fast.

The force can be capped using inter ljangleforcecap. It might turn out to be
useful in some cases to keep this capping during the whole simulation. This is due to
the very sharp angular dependence for small distance, compared to σ. Two beads might
come very close to each other while having unfavorable angles such that the interaction
is turned off. Then a change in the angle might suddenly turn on the interaction and
the system will blow up (the potential is so steep that one would need extremely small
time steps to deal with it, which is not very clever for such rare events).

For instance, when modeling hydrogen bonds (N-H...O=C), one can avoid simulating
hydrogens and oxygens by using this potential. This comes down to implementing a
HBond potential between N and C atoms.

48

The optional parameter rcap is the usual cap radius. The four other optional pa-
rameters (z0 , δz , κ, ε′) describe a different interaction strength ε′ for a subset of the
simulation box. The box is divided through the z plane in two different regions: region
1 which creates an interaction with strength ε, region 2 with interaction strength ε′. The
2nd region is defined by its z -midplane z0 , its total thickness δz , and the interface width
κ. Therefore, the interaction strength is ε everywhere except for the region of the box
z0 − δz/2 < z < z0 + δz/2. The interface width smoothly interpolates between the two
regions to avoid discontinuities. As an example, one can think of modeling hydrogen
bonds in two different environments: water, where the interaction is rather weak, and
in a lipid bilayer, where it is comparatively stronger.

5.2.2. Gay-Berne interaction

Syntax
inter type1 type2 gay-berne ε0 σ0 rcutoff k1 k2 µ ν

Required features: ROTATION GAY_BERNE

Description
This defines a Gay-Berne potential for prolate and oblate particles between particles of
the types type1 and type2 . The Gay-Berne potential is an anisotropic version of the
classic Lennard-Jones potential, with orientational dependence of the range σ0 and the
well-depth ε0 .

Assume two particles with orientations given by the unit vectors ûi and ûj and inter-
molecular vector r = rr̂. If r < rcut , then the interaction between these two particles is
given by

V (rij , ûi, ûj) = 4ε(r̂ij , ûi, ûj)
(
r̃−12
ij − r̃−6

ij

)
, (5.12)

otherwise V (r) = 0. The reduced radius is

r̃ =
r − σ(r̂, ûi, ûj) + σ0

σ0
, (5.13)

σ(r̂, ûi, ûj) = σ0

{
1− 1

2
χ

[
(r̂ · ûi + r̂ · ûj)2

1 + χûi · ûj
+

(r̂ · ûi − r̂ · ûj)2

1− χûi · ûj

]}− 1
2

(5.14)

and

ε(r̂, ûi, ûj) =

ε0
(
1− χ2(ûi · ûj)

)− ν
2

[
1− χ′

2

(
(r̂ · ûi + r̂ · ûj)2

1 + χ′ ûi · ûj
+

(r̂ · ûi − r̂ · ûj)2

1− χ′ ûi · ûj

)]µ
. (5.15)

The parameters χ =
(
k2

1 − 1
)
/
(
k2

1 + 1
)

and χ′ =
(
k

1/µ
2 − 1

)
/
(
k

1/µ
2 + 1

)
are responsi-

ble for the degree of anisotropy of the molecular properties. k1 is the molecular elonga-
tion, and k2 is the ratio of the potential well depths for the side-by-side and end-to-end

49

configurations. The exponents µ and ν are adjustable parameters of the potential. Sev-
eral Gay-Berne parametrizations exist, the original one being k1 = 3, k2 = 5, µ = 2 and
ν = 1.

5.3. Bonded interactions

Syntax

inter bondid [interaction] [parameters]

Description
Bonded interactions are identified by their bonded interaction type identificator
bondid , which is a non-negative integer. The inter bondid command is used to
specify the type and parameters of a bonded interaction, which applies to all par-
ticles connected explicitely by this bond using the part command (see section 4.1
on page 26). Therefore, defining a bond between two particles always involves two
steps: defining the interaction and applying it. Assuming that two particles with
ids 42 and 43 already exist, one can create e.g. a FENE-bond between them using

inter 1 fene 10.0 2.0

part 42 bond 1 43

If a FENE-bond with the same interaction parameters is required between several
particles (e.g. in a simple chain molecule), one can use the sampe type id :

inter 1 fene 10.0 2.0

part 42 bond 1 43; part 43 bond 1 44

Bonds can have more than just two bond partners. For the inter command that does
not play a role as it only specifies the parameters, only when applying the bond using
the bond particle, the number of involved particles plays a role. The number of involved
particles and their order, if important, is nevertheless specified here for completeness.

5.3.1. FENE bond

Syntax

inter bondid fene K ∆rmax [r0]

Description
This creates a bond type with identificator bondid with a FENE (finite extension nonlin-
ear expander) interaction. This is a rubber-band-like, symmetric interaction betweeen
two particles with prefactor K , maximal stretching ∆rmax and equilibrium bond length
r0 . The bond potential diverges at a particle distance r = r0−∆rmax and r = r0 +∆rmax.
It is given by

V (r) = −1

2
K ∆rmax

2 ln

[
1−

(
r − r0

∆rmax

)2
]
. (5.16)

50

5.3.2. Harmonic bond

Syntax

inter bondid harmonic K R [rcut]

Description

This creates a bond type with identificator bondid with a classical harmonic potential.
It is a symmetric interaction between two particles. The potential is minimal at particle
distance r = R, and the prefactor is K. It is given by

V (r) =
1

2
K (r −R)2 (5.17)

The third, optional parameter rcut defines a cutoff radius. Whenever a harmonic bond
gets longer than rcut, the bond will be reported as broken, and a background error will
be raised.

5.3.3. Subtracted Lennard-Jones bond

Syntax

inter bondid subt_lj reserved R

Description

This creates a “bond” type with identificator bondid , which acts between two particles
and actually subtracts the Lennard-Jones interaction between the involved particles. The
first parameter, reserved is a dummy just kept for compatibility reasons. The second
parameter, R, is used as a check: if any bond length in the system exceeds this value, the
program terminates. When using this interaction, it is worthwhile to consider capping
the Lennard-Jones potential appropriately so that round-off errors can be avoided.

This interaction is useful when using other bond potentials which already include
the short–ranged repulsion. This often the case for force fields or in general tabulated
potentials.

5.3.4. Rigid bonds

Syntax

inter bondid rigid_bond constrained bond distance positional tolerance
velocity tolerance

Description

To simulate rigid bonds, ESPResSo uses the Rattle Shake algorithm which satisfies inter-
nal constraints for molecular models with internal constraints, using Lagrange multipliers.[2]

51

5.3.5. Tabulated bond interactions

Syntax

(1) inter bondid tabulated bond filename
(2) inter bondid tabulated angle filename
(3) inter bondid tabulated dihedral filename

Description

This creates a bond type with identificator bondid with a two-body bond length (variant
(1)), three-body angle (variant (2)) or four-body dihedral (variant (3)) tabulated poten-
tial. The tabulated forces and energies have to be provided in a file filename, which is
formatted identically as the files for non-bonded tabulated potentials (see section 5.1.1).

The potential is calculated as follows:

• Variant (1) is a two body interaction depending on the distance of two particles.
The force acts in the direction of the connecting vector between the particles.
The bond breaks above the tabulated range, but for distances smaller than the
tabulated range, a linear extrapolation based on the first two tabulated force values
is used.

• Variant (2) is a three-body angle interaction similar to the angle potential (see
section 5.4). It is assumed that the potential is tabulated for all angles between
0 and π, where 0 corresponds to a stretched polymer, and just as for the tabu-
lated pair potential, the forces are scaled with the inverse length of the connecting
vectors. The force on particles p1 and p3 (in the notation of section 5.4) acts per-
pendicular to the connecting vector between the particle and the center particle
p2 in the plane defined by the three particles. The force on the center particle p2

balances the other two forces.

• Variant (3) tabulates a torsional dihedral angle potential (see section 5.5). It is
assumed that the potential is tabulated for all angles between 0 and 2π. This
potential is not tested yet! Use on own risk, and please report your findings and
eventually necessary fixes.

5.3.6. Virtual bonds

Syntax

inter bondid virtual_bond

Description

This creates a virtual bond type with identificator bondid , i.e. a pair bond without
associated potential or force. It can used to specify topologies and for some analysis
that rely on bonds, or e.g. for bonds that should be displayed in VMD.

52

5.4. Bond-angle interactions

Syntax

inter bondid angle K [φ0]

Required features: BOND_ANGLE_HARMONIC , BOND_ANGLE_COSINE or BOND_ANGLE_-

COSSQUARE

Description
This creates a bond type with identificator bondid with an angle dependent potential.
This potential is defined between three particles. The particle for which the bond is
created, is the central particle, and the angle φ between the vectors from this particle
to the two others determines the interaction. K is the bending constant, and the op-
tional parameter phi0 is the equilibirum bond angle in radian ranging from 0 to π. If
this parameter is not given, it defaults to φ0 = π, which corresponds to a stretched
configuration. For example, for a bond defined by

part $p_2 bond 4 $p_1 $p_3

the minimal energy configurations are the following:

~ ~ ~ ~ ~
~

p1 p2 p3 p1

p3

p2

inter 4 angle 1.0 [expr [PI]/2]inter 4 angle 1.0 [PI]

For the potential acting between the three particles, different choices are possible,
which have to be activated in myconfig.h

• Harmonic bond angle potential (requires feature BOND ANGLE HARMONIC):
A classical harmonic potential,

V (φ) =
K

2
(φ− φ0)2 . (5.18)

Unlike the two following variants, this potential has a kink at φ = φ0 + π and
accordingly a discontinuity in the force, and should therefore be used with caution.

• Cosine bond angle potential (requires feature BOND ANGLE COSINE):

V (α) = K [1− cos(φ− φ0)] (5.19)

Around φ0, this potenial is close to a harmonic one (both are 1/2(φ − φ0)2 in
leading order), but it is periodic and smooth for all angles φ.

53

• Cosine square bond angle potential (requires feature BOND ANGLE COSSQUARE):

V (α) =
K

2
[cos(φ)− cos(φ0)]2 (5.20)

This form is used for example in the GROMOS96 force field. The potential is
1/8(φ−φ0)4 around φ0, and therefore much flatter than the two potentials before.

5.5. Dihedral interactions

Syntax

inter bondid dihedral n K p

Description

This creates a bond type with identificator bondid with a dihedral potential, i.e. a four-
body-potential. In the following, let the particle for which the bond is created be particle
p2, and the other bond partners p1, p3, p4, in this order, i.e. part p2 bond bondid p1 p3 p4.
Then, the dihedral potential is given by

V (φ) = K [1− cos(nφ− p)] , (5.21)

where n is the multiplicity of the potential (number of minimas) and can take any integer
value (typically from 1 to 6), p is a phase parameter and K is the bending constant of the
potential. φ is the dihedral angle between the particles defined by the particle quadrupel
p1, p2, p3 and p4, i.e. the angle between the planes defined by the particle triples p1, p2

and p3 and p2, p3 and p4:

φ

P1

P3
P4

P2

Together with appropriate Lennard-Jones interactions, this potential can mimic a large
number of atomic torsion potentials.

If you enable the feature OLD DIHEDRAL, then the old, less general form of the
potential is used:

V (φ) = K [1 + p cos(nφ)] , (5.22)

where p is rather a phase factor and can only take values p = ±1.

54

5.6. Coulomb interaction

Syntax
(1) inter coulomb 0.0

(2) inter coulomb

(3) inter coulomb parameters

Description
These commands allow to set up the calculation of the Coulomb interaction. The
Coulomb (or electrostatic) interaction is defined as follows. For a pair of particles at
distance r with charges q1 and q2, the interaction is given by

UC(r) = lBkBT
q1q2

r
. (5.23)

where lB = e2
o/(4πεkBT) denotes the Bjerrum length, which measures the strength of

the electrostatic interaction. As a special case, when the internal variable temperature
is set to zero, the value of bjerrum length you enter is treated as lBkBT rather than
lB. This occurs when the thermostat is switched off and ESPResSo performs an NVE
integration (see also Section 6.2).

Computing electrostatic interactions is computationally very expensive. ESPResSo
features some state-of-the-art algorithms to deal with these interactions as efficiently as
possible, but almost all of them require some knowledge to use them properly. Unedu-
cated use can result in completely unphysical simulations.

Variant (1) disables Coulomb interactions. Variant (2) returns the current pa-
rameters of the coulomb interaction as a Tcl-list using the same syntax as used to
setup the method, e.g.

{coulomb 1.0 p3m 7.75 8 5 0.1138 0.0}

{coulomb epsilon 0.1 n_interpol 32768 mesh_off 0.5 0.5 0.5}

Variant (3) is the generic syntax to set up a specific method or its parameters,
the details of which are described in the following subsections. Note that using the
electrostatic interaction also requires assigning charges to the particles. This is done
using the part command to set the charge q, e.g.

inter coulomb 1.0 p3m tune accuracy 1e-4

part 0 q 1.0; part 1 q -1.0

5.6.1. Coulomb P3M

Syntax
inter coulomb lB p3m rcut (mesh | {meshx meshy meshz}) cao alpha

Required features: ELECTROSTATICS

Description
For this feature to work, you need to have the fftw3 library installed on your system.
In ESPResSo, you can check if it is compiled in by checking for the feature FFTW.

55

This command activates the P3M method to compute the electrostatic interactions
between charged particles. The different parameters are described in more detail in [15].

rcut The real space cutoff as a positive floating point number.

mesh The number of mesh points, as a single positive integer.

meshx ,y,z The number of mesh points in x, y and z direction. This is relevant for
noncubic boxes.

cao The charge-assignment order, an integer between 0 and 7.

alpha The Ewald parameter as a positive floating point number.

Make sure that you know the relevance of the P3M parameters before using P3M! If
you are not sure, read the following references [18, 22, 28, 14, 15, 16, 13, 12].

Tuning Coulomb P3M

Syntax

inter coulomb lB p3m (tune | tunev2) accuracy accuracy
[r_cut rcut] [mesh mesh] [cao cao] [alpha α]

Required features: ELECTROSTATICS

Description
It is not easy to calculate the various parameters of the P3M method such that the
method provides the desired accuracy at maximum speed. To simplify this, ESPResSo
provides a function to automatically tune the algorithm. Note that for this function to
work properly, your system should already contain an initial configuration of charges and
the correct initial box size. Also note that both provided tuning algorithms work very
well on homogenous charge distributions, but might not achieve the requested precision
for highly inhomogenous or symmetric systems. For example, because of the nature of
the P3M algorithm, systems are problematic where most charges are placed in one plane,
one small region, or on a regular grid.

The function employs the analytical expression of the error estimate for the P3M
method [22] and its real space error [28] to obtain sets of parameters that yield the
desired accuracy, then it measures how long it takes to compute the coulomb interaction
using these parameter sets and chooses the set with the shortest run time.

The function will only automatically tune those parameters that are not set to a
predetermined value using the optional parameters of the tuning command.

The two tuning methods follow different methods for determining the optimal param-
eters. While the tune version tests different values on a grid in the parameter space,
the tunev2 version uses a bisection to determine the optimal parameters. In general, for
small systems the tune version is faster, while for large systems tunev2 is faster. The
results of tunev2 are always at least as good as the parameters from the tune version,
and normally the obtained accuracy is much closer to the desired value.

56

During execution the tuning routines report the tested parameter sets, the correspond-
ing k-space and real-space errors and the timings needed for force calculations (the setmd
variable timings controls the number of test force calculations). Since the error depends
on rcut/box l and αbox l the output is given in these units.

Note that the previous setting of rcut, cao and mesh will be remembered. If you want
to retune your electrostatics, e.g. after a major system change, you should use

inter coulomb lB p3m tune accuracy acc r_cut 0 mesh 0 cao 0

Additional P3M parameters

Syntax

inter coulomb [epsilon (metallic | epsilon)] [n_interpol points]
[mesh_off xoff yoff zoff]

Description

Once P3M algorithm has been set up, it is possible to set some additional P3M param-
eters with this command. The different parameters have the following meaning:

epsilon epsilon The dielectric constant of the surrounding medium, metallic (i.e. in-
finity) or some finite positive number. Defaults to metallic.

n_interpol ni nterpol Number of interpolation points for the charge assignment func-
tion. When this is set to 0, interpolation is turned off and the function is computed
directly. Defaults to 32768.

mesh_off meshoff Offset of the first mesh point from the lower left corner of the simu-
lation box in units of the mesh constant. Defaults to 0.5 0.5 0.5.

5.6.2. Debye-Hückel potential

Syntax

inter coulomb lB dh κ rcut

Required features: ELECTROSTATICS

Description

Defines the electrostatic potential by

UC−DH = lBkBT
q1q2exp(−κr)

r
for r < rcut (5.24)

The Debye-Hückel potential is an approximate method for calculating electrostatic
interactions, but technically it is treated as other short-ranged non-bonding potentials.
For r > rcut it is set to zero which introduces a step in energy. Therefore, it introduces
fluctuations in energy.

For κ = 0, this corresponds to the plain coulomb potential.

57

5.6.3. MMM2D

Syntax

inter coulomb lB mmm2d maximal pairwise error [fixed far cutoff]
[dielectric εt εm εb] [dielectric-contrasts ∆t ∆b]

Required features: ELECTROSTATICS

Description

MMM2D coulomb method for systems with periodicity 1 1 0. Needs the layered cell
system. The performance of the method depends on the number of slices of the cell
system, which has to be tuned manually. It is automatically ensured that the maximal
pairwise error is smaller than the given bound. The far cutoff setting should only be
used for testing reasons, otherwise you are more safe with the automatical tuning. If
you even don’t know what it is, do not even think of touching the far cutoff. For details
on the MMM family of algorithms, refer to appendix E on page 195.

The last two, mutually exclusive arguments “dielectric” and “dielectric-constants”
allow to specify dielectric contrasts at the upper and lower boundaries of the simulation
box. The first form specifies the respective dielectric constants in the media, which
however is only used to calculate the contrasts. That is, specifying εt = εm = εb = const
is always identical to εt = εm = εb = 1. The second form specifies only the dielectric
contrasts at the boundaries, that is ∆t = εm−εt

εm+εt
and ∆b = εm−εb

εm+εb
. Using this form allows

to choose ∆t/b = −1, corresponding to metallic boundary conditions.

5.6.4. MMM1D

Syntax

(1) inter coulomb lB mmm1d switch radius [bessel cutoff]
maximal pairwise error

(2) inter coulomb lB mmm1d tune maximal pairwise error

Required features: ELECTROSTATICS

Description

MMM1D coulomb method for systems with periodicity 0 0 1. Needs the nsquared cell
system (see section 6.4 on page 74). The first form sets parameters manually. The
switch radius determines at which xy-distance the force calculation switches from the
near to the far formula. If the Bessel cutoff is not explicitly given, it is determined from
the maximal pairwise error, otherwise this error only counts for the near formula. The
second, tuning form just takes the maximal pairwise error and tries out a lot of switching
radii to find out the fastest one. If this takes too long, you can change the value of the
setmd variable timings, which controls the number of test force calculations. For details
on the MMM family of algorithms, refer to appendix E on page 195.

58

5.6.5. Maxwell Equation Molecular Dynamics (MEMD)

Syntax

inter coulomb lB memd f mass mesh [epsilon ε∞]

Required features: ELECTROSTATICS

Description
This is an implementation of the instantaneous 1/r Coulomb interaction

U = lBkBT
q1q2

r
(5.25)

as the potential of mean force between charges which are dynamically coupled to a local
electromagnetic field.

The algorithm currently works with the following constraints:

• cellsystem has to be domain decomposition but without Verlet lists!

• system has to be periodic in three dimensions.

Arguments
• f mass is the mass of the field degree of freedom and equals to the square root of

the inverted speed of light.

•mesh is the number of mesh points for the interpolation of the electromagnetic
field in one dimension.

• ε∞ is the background dielectric permittivity at infinity. This defaults to metallic
boundary conditions, to match the results of P3M.

The arising self-interactions are treated with a modified version of the exact solution
of the lattice Green’s function for the problem.

Currently, forces have large errors for two particles within the same lattice cube. This
may be fixed in future development, but right now leads to the following rule of thumb
for the parameter choices:

• The lattice should be of the size of your particle size (i.e. the lennard jones epsilon).
That means: mesh ≈ box l/lj sigma

• The integration timestep should be in a range where no particle moves more than
one lattice box (i.e. lennard jones sigma) per timestep.

• The speed of light should satisfy the stability criterion c � a/dt, where a is the
lattice spacing and dt is the timestep. For the second parameter, this means
f mass� dt2/a2.

The main error of the MEMD algorithm stems from the lattice interpolation and is
proportional to the lattice size in three dimensions, which means ∆lattice ∝ a3.

59

Without derivation here, the algorithmis error is proportional to 1/c2, where c is the
adjustable speed of light. From the stability criterion, this yields

∆maggs = A · a3 +B · dt2/a2 (5.26)

This means that increasing the lattice will help the algorithmic error, as we can tune
the speed of light to a higher value. At the same time, it increases the interpolation
error at an even higher rate. Therefore, momentarily it is advisable to choose the lattice
with a rather fine mesh of the size of the particles. As a rule of thumb, the error will
then be less than 10−5 for the particle force.

For a more detailed description of the algorithm, see appendix D on page 189 or the
publications [32, 36].

5.6.6. Electrostatic Layer Correction (ELC)

Syntax

inter coulomb elc maximal pairwise error gap size
[far cutoff] [noneutralization] [dielectric εt εm εb]
[dielectric-contrasts ∆t ∆b]

Required features: ELECTROSTATICS

Description

This is a special procedure that converts a 3d method, to a 2d method, in computational
order N. Currently, it only supports P3M. This means, that you will first have to set up
the P3M algorithm (via inter coulomb p3m params) before using ELC. The algorithm
is definitely faster than MMM2D for larger numbers of particles (> 400 at reasonable
accuracy requirements). The maximal pairwise error maximal pairwise error sets the
LUB error of the force between any two charges without prefactors (see the papers).
The algorithm tries to find parameters to meet this LUB requirements or will throw an
error if there are none.

The gap size gap size gives the height of the empty region between the system box
and the neighboring artificial images (again, see the paper). ESPResSo does not make
sure that the gap is actually empty, this is the users responsibility. The method will
compute fine of the condition is not fulfilled, however, the error bound will not be
reached. Therefore you should really make sure that the gap region is empty (e. g. by
constraints).

The setting of the far cutoff far cutoff is only intended for testing and allows to directly
set the cutoff. In this case, the maximal pairwise error is ignored. The periodicity has
to be set to 1 1 1 still, and the 3d method has to be set to epsilon metallic, i.e. metallic
boundary conditions. For details, see appendix E on page 195.

By default, ELC just as P3M adds a homogeneous neutralizing background to the
system in case of a net charge. However, unlike in three dimensions, this background adds
a parabolic potential across the slab [9]. Therefore, under normal circumstance, you will
probably want to disable the neutralization using [noneutralization]. This corresponds

60

then to a formal regularization of the forces and energies [9]. Also, if you add neutralizing
walls explicitely as constraints, you have to disable the neutralization.

The dielectric contrast features work exactly the same as for MMM2D, see the docu-
mentation above.

Make sure that you read the papers on ELC ([6, 53]) before using it.

5.6.7. Dielectric interfaces with the ICC? algorithm

Syntax

iccp3m n induced charges convergence convergence criterion areas areas
normals normals sigmas sigmas epsilons epsilons [eps_out eps out]
[relax relaxation parameter] [max_iterations max iterations]
[ext_field ext field]

Required features: ELECTROSTATICS

Description

The ICC? algorithm allows to take into account arbitrarily shaped dielectric interfaces.
This is done by iterating the charge on the particles with the ids 0 to n induced particles − 1
until the correctly represent the influence of the dielectric discontinuity. It relies on a
coulomb solver that is already initialized. This Coulomb solver can be P3M, P3M+ELC,
MMM2D or MMM1D. As most of the times, ICC? will be used with P3M the corre-
sponding command is called iccp3m.

Please make sure to read the corresponding articles, mainly[8, 51, 27] before using it.

The particles with ids 0 to n induced particles − 1 are treated as iterated particles by
ICC?. The constitute the dielectric interface and should be fixed in space. The param-
eters areas and epsilons are Tcl lists containing one floating point number describing
each surface elements area and dielectric constant. sigmas allows to take into account a
(bare) charge density, thus a surface charge density in absence of any charge induction.
normals is a Tcl list of Tcl lists with three floating point numbers describing the outward
pointing normal vectors for every surface element. The parameter convergence criterion
allows to specify the accuracy of the iteration. It corresponds to the maximum relative
change of any of the interface particle’s charge. After max iterations the iteration stops
anyways. The dielectric constant in bulk, i. e. outside the dielectric walls is specified
by eps out . A homogenous electric field can be added to the calculation of dielectric
boundary forces by specifying it in the parameter ext field .

61

Quick setup of dielectric interfaces

Syntax

(1) dielectric sphere center cx cy cz radius r res res
(2) dielectric wall normal nx ny nz dist d res res
(3) dielectric cylinder center cx cy cz axis ax ay az radius r

direction d
(4) dielectric pore center cx cy cz axis ax ay az radius r length l

smoothing_radius rs res res

Description

The command dielectric allows to conveniently create dielectric interfaces similar to
the constraint and the lbboundary command. Currently the creation of spherical, cylin-
drical and planar geometries as well as a pore geometry is supported. It is implemented
in Tcl and places particles in the right positions and adds the correct values to the global
Tcl variables icc areas icc normals icc sigmas icc epsilons and increases the global Tcl
variable varn induced charges. Thus after setting up the shapes, it is still necessary to
register them by calling iccp3m, usually in the following way:

iccp3m $n_induced_charges epsilons $icc_epsilons normals

$icc_normals areas $icc_areas sigmas $icc_sigmas

5.7. Dipolar interaction

Syntax

(1) inter magnetic 0.0

(2) inter magnetic

(3) inter magnetic parameters

Description

These commands can be used to set up magnetostatic interactions, which is defined as
follows:

UD−P3M (~r) = lBkBT

(
(~µi · ~µj)
r3

− 3(~µi · ~r)(~µj · ~r)
r5

)
(5.27)

where r = |~r|.
lB is a dimensionless parameter similar to the Bjerrum length in electrostatics which

helps to tune the effect of the medium on the magnetic interaction between two magnetic
dipoles.

Computing magnetostatic interactions is computationally very expensive. ESPResSo
features some state-of-the-art algorithms to deal with these interactions as efficiently as
possible, but almost all of them require some knowledge to use them properly. Unedu-
cated use can result in completely unphysical simulations.

The commands above work as their couterparts for the electrostatic interactions
(see section 5.6.1 on page 55). Variant (1) disables dipolar interactions. Variant

62

(2) returns the current parameters of the dipolar interaction as a Tcl-list using the
same syntax as used to setup the method, e.g.

{coulomb 1.0 p3m 7.75 8 5 0.1138 0.0}

{coulomb epsilon 0.1 n_interpol 32768 mesh_off 0.5 0.5 0.5}

Variant (3) is the generic syntax to set up a specific method or its parameters,
the details of which are described in the following subsections. Note that using the
magnetostatic interaction also requires assigning dipole moments to the particles.
This is done using the part command to set the dipole moment dip, e.g.

inter coulomb 1.0 p3m tune accuracy 1e-4

part 0 dip 1 0 0; part 1 dip 0 0 1

5.7.1. Dipolar P3M

Syntax
inter magnetic lB p3m rcut mesh cao alpha

Required features: DIPOLES

Description
This command activates the P3M method to compute the dipolar interactions between
charged particles. The different parameters are described in more detail in [12].

rcut The real space cutoff as a positive floating point number.

mesh The number of mesh points, as a single positive integer.

cao The charge-assignment order, an integer between 0 and 7.

alpha The Ewald parameter as a positive floating point number.

Make sure that you know the relevance of the P3M parameters before using P3M! If
you are not sure, read the following references [18, 22, 28, 14, 15, 16, 13].

Note that dipolar P3M does not work with non-cubic boxes.

Tuning dipolar P3M

Syntax

inter magnetic lB p3m (tune | tunev2) accuracy accuracy
[r_cut rcut] [mesh mesh] [cao cao] [alpha α]

Required features: DIPOLES

Description
Tuning dipolar P3M works exactly as tuning Coulomb P3M. Therefore, for details on how
to tune the algorothm, refer to the documentation of Coulomb P3M (see section 5.6.1
on page 56).

For the magnetic case, the expressions of the error estimate are given in [12].

63

5.7.2. Dipolar Layer Correction (DLC)

Syntax

inter magnetic mdlc accuracy gap size [far cutoff]

Required features: DIPOLES

Description
Like ELC but applied to the case of magnetic dipoles, but here the accuracy is the one
you wish for computing the energy. farcutoff is set to a value that, assuming all dipoles
to be as larger as the largest of the dipoles in the system, the error for the energy would
be smaller thant the value given by accuracy. At this moment you cannot compute
the accuracy for the forces, or torques, nonetheless, usually you will have an error for
forces and torques smaller than for energies. Thus, the error for the energies is an upper
boundary to all errors in the calculations.

At present, the program assumes that the gap without particles is along the z-direction.
The gap-size is the length along the z-direction of the volume where particles are not
allowed to enter.

As a reference for the DLC method, see [11].

5.7.3. Dipolar all-with-all and no replicas (DAWAANR)

Syntax
inter magnetic lB dawaanr

Required features: DIPOLES

Description
This interaction calculates energies and forces between dipoles by explicitly summing
over all pairs. For the directions in which the system is periodic (as defined by setmd

periodic), it applies the minimum image convention, i.e. the interaction is effectively
cut off at half a box length.

In periodic systems, this method should only be used if it is not possible to use dipolar
P3M or DLC, because those methods have a far better accuracy and are much faster.
In a non-periodic system, the DAWAANR-method gives the exact result.

5.7.4. Magnetic Dipolar Direct Sum (MDDS)

Syntax
inter magnetic lB mdds n_cut value n cut

Required features: DIPOLES MAGNETIC_DIPOLAR_DIRECT_SUM

Description
The command enables the “magnetic dipolar direct sum”. The dipole-dipole interaction
is computed by explicitly summing over all pairs. If the system is periodic in one or
more directions, the interactions with further value n cut replicas of the system in all
periodic directions is explicitly computed.

64

As it is very slow, this method is not intended to do simulations, but rather to check
the results you get from more efficient methods like P3M.

5.8. Special interaction commands

5.8.1. Tunable-slip boundary interaction

Syntax
inter type1 type2 tunable_slip T γL rcut δt vx vy vz

Required features: TUNABLE_SLIP

Description
Simulating microchannel flow phenomena like the Plane Poiseuille and the Plane Couette
Flow require accurate boundary conditions. There are two main boundary conditions in
use:

1. slip boundary condition which means that the flow velocity at the the hydrody-
namic boundaries is zero.

2. partial-slip boundary condition which means that the flow velocity at the hydro-
dynamic boundaries does not vanish.

In recent years, experiments have indicated that the no-slip boundary condition is
indeed usually not valid on the micrometer scale. Instead, it has to be replaced by the
partial-slip boundary condition

δB ∂nv‖|rB = v‖|rB ,

where v‖ denotes the tangential component of the velocity and ∂nv‖ its spatial derivative
normal to the surface, both evaluated at the position rB of the so-called hydrodynamic
boundary. This boundary condition is characterized by two effective parameters, namely
(i) the slip length δB and (ii) the hydrodynamic boundary rB.

Within the approach of the tunable-slip boundary interactions it is possible to tune the
slip length systematically from full-slip to no-slip. A coordinate-dependent Langevin-
equation describes a viscous layer in the vicinity of the channel walls which exerts an
additional friction on the fluid particles. T is the temperature, γL the friction coefficient
and rcut is the cut-off radius of this layer. δt is the timestep of the integration scheme.
With vx vy and vz it is possible to give the layer a reference velocity to create a Plane
Couette Flow. Make sure that the cutoff radius rcut is larger than the cutoff radius of
the constraint Lennard-Jones interactions. Otherwise there is no possibility that the
particles feel the viscous layer.

This method was tested for Dissipative Particle Dynamics but it is intended for meso-
scopic simulation methods in general. Note, that to use tunable-slip boundary interac-
tions you have to apply two plane cell constraints with Lennard-Jones in addition to the
tunable-slip interaction. Make sure that the cutoff radius rcut is larger than the cutoff

65

radius of the constraint Lennard-Jones interactions. Otherwise there is no possibility
that the particles feel the viscous layer. Please read reference [44] before using this
interaction.

5.8.2. DPD interaction

Syntax

inter type1 type2 inter_dpd gamma r cut wf tgamma tr cut twf

Required features: INTER_DPD

Description

This is a special interaction that is to be used in conjunction with the Dissipative Particle
Dynamics algorithm 6.2.2 when the INTER_DPD implementation is used. The parameters
correspond to the parameters of the DPD thermostat 5.8.2, but can be set individually
for the different interactions.

5.8.3. Fixing the center of mass

Syntax

inter typeid1 typeid1 comfixed flag

Required features: COMFIXED

Description

This interaction type applies a constraint on particles of type typeid1 such that during
the integration the center of mass of these particles is fixed. This is accomplished as
follows: The sum of all the forces acting on particles of type typeid1 are calculated. These
include all the forces due to other interaction types and also the thermostat. Next a force
equal in magnitude, but in the oppositte direction is applied on the particles. This force
is divided equally on all the particles of type typeid1 , since currently there is no mass
concept in ESPResSo. Note that the syntax of the declaration of comfixed interaction
requires the same particle type to be input twice. If different particle types are given in
the input, the program exits with an error message. flag can be set to 1 (which turns
on the interaction) or 0 (to turn off the interaction).

5.8.4. Pulling particles apart

Syntax

inter typeid1 typeid2 comforce flag dir force fratio

Required features: COMFORCE

Description

The comforce interaction type enables one to pull away particle groups of two different
types. It is mainly designed for pulling experiments on bundles. Within a bundle of
molecules of type number typeid1 lets mark one molecule as of type typeid2 . Using

66

comforce one can apply a force such that t2 can be pulled away from the bundle. The
comforcef lag is set to 1 to turn on the interaction, and to 0 otherwise. The pulling
can be done in two different directions. Either parallel to the major axis of the bundle
(dir = 0) or perpendicular to the major axis of the bundle (dir = 1). force is used
to set the magnitude of the force. fratio is used to set the ratio of the force applied
on particles of typeid1 vs. typeid2 . This is useful if one has to keep the total applied
force on the bundle and on the target molecule the same. A force of magnitude force
is applied on typeid2 particles, and a force of magnitude (force * fratio) is applied on
typeid1 particles.

5.8.5. Capping the force during warmup

Syntax

(1) inter ljforcecap (Fmax | individual)
(2) inter morseforcecap (Fmax | individual)
(3) inter buckforcecap (Fmax | individual)
(4) inter tabforcecap (Fmax | individual)

Required features: (1) LENNARD_JONES (2) MORSE (3) BUCKINGHAM (4) TABULATED

Description
Non-bonded interactions are often used to model the hard core repulsion between par-
ticles. Most of the potentials in the section are therefore singular at zero distance, and
forces usually become very large for distances below the particle size. This is not a prob-
lem during the simulation, as particles will simply avoid overlapping. However, creating
an initial dense random configuration without overlap is often difficult.

By artificially capping the forces, it is possible to simulate a system with overlaps.
By gradually raising the cap value Fmax, possible overlaps become unfavorable, and the
system equilibrates to a overlap free configuration.

This command will cap the force to Fmax , i.e. for particle distances which would
lead to larger forces than Fmax, the force remains at Fmax. Accordingly, the potential
is replaced by replaced by rFmax. Particles placed exactly on top of each other will be
subject to a force of magnitude Fmax along the first coordinate axis.

The force capping is switched off by setting Fmax = 0. Note that force capping always
applies to all interactions of the corresponding type (e.g. all Lennard-Jones interactions)
regardless of the particle types.

If instead of a force capping value, the string “individual” is given, the force capping
can be set individually for each interaction. The capping radius is in this case not
derived from the potential parameters, but is given by an additional signal floating
point parameter to the interaction.

67

6. Setting up the system

6.1. setmd: Setting global variables.

Syntax
(1) setmd variable
(2) setmd variable [value]+

Description
Variant (1) returns the value of the ESPResSo global variable variable, variant (2) can
be used to set the variable variable to value. The ’+’ in variant (2) means that for some
variables more than one value can be given (example: setmd boxl 5 5 5). The following
global variables can be set:

box_l (double[3]) Simulation box length.

cell_grid (int[3], read-only) Dimension of the inner cell grid.

cell_size (double[3], read-only) Box-length of a cell.

dpd_gamma (double, read-only) Friction constant for the DPD thermostat.

dpd_r_cut (double, read-only) Cutoff for DPD thermostat.

gamma (double, read-only) Friction constant for the Langevin thermostat.

integ_switch (int, read-only) Internal switch which integrator to use.

local_box_l (int[3], read-only) Local simulation box length of the nodes.

max_cut (double, read-only) Maximal cutoff of real space interactions.

max_cut_nonbonded (double, read-only) Maximal cutoff of nonbonded real space
interactions.

max_cut_bonded (double, read-only) Maximal cutoff of bonded real space interac-
tions.

max_num_cells (int) Maximal number of cells for the link cell algorithm. Reason-
able values are between 125 and 1000, or for some problems (nt otalparticles /
nnodes).

max_part (int, read-only) Maximal identity of a particle. This is in general not
related to the number of particles!

max_range (double, read-only) Maximal range of real space interactions: maxcut
+ skin.

68

max_skin (double, read-only) Maximal skin to be used for the link cell/verlet algo-
rithm. This is the minimum of cell size - max range.

min_global_cut (double) Minimal total cutoff for real space. Effectively, this plus
the skin is the minimally possible cell size. Espresso typically determines this
value automatically, but some algorithms, e.g. virtual sites, require you to specify
it manually.

min_num_cells (int) Minimal number of cells for the link cell algorithm. Reason-
able values range in 10−6N2 to 10−7N2. In general just make sure that the Verlet
lists are not incredibly large. By default the minimum is 0, but for the automatic
P3M tuning it may be wise to set larger values for high particle numbers.

n_layers (int, read-only) Number of layers in cell structure LAYERED (see sec-
tion 6.4 on page 74).

n_nodes (int, read-only) Number of nodes.

n_part (int, read-only) Total number of particles.

n_part_types (int, read-only) Number of particle types that were used so far in
the inter command (see chaptertcl:inter).

node_grid (int[3]) 3D node grid for real space domain decomposition (optional, if
unset an optimal set is chosen automatically).

nptiso_gamma0 (double, read-only)

nptiso_gammav (double, read-only)

npt_p_ext (double, read-only) Pressure for NPT simulations.

npt_p_inst (double) Pressure calculated during an NPT isotropic integration.

piston (double, read-only) Mass off the box when using NPT isotropic integrator.

periodicity (bool[3]) Specifies periodicity for the three directions. If the feature
PARTIAL PERIODIC is set, this variable can be set to (1,1,1) or (0,0,0) at the
moment. If not it is readonly and gives the default setting (1,1,1).

skin (double) Skin for the Verlet list.

temperature (double, read-only) Temperature of the simulation.

thermo_switch (double, read-only) Internal variable which thermostat to use.

time (double) The simulation time.

time_step (double) Time step for MD integration.

timings (int) Number of samples to (time-)average over.

transfer_rate (int, read-only) Transfer rate for VMD connection. You can use
this to transfer any integer value to the simulation from VMD.

69

verlet_flag (bool) Indicates whether the Verlet list will be rebuild. The program
decides this normally automatically based on your actions on the data.

verlet_reuse (double) Average number of integration steps the verlet list has been
re-used.

6.2. thermostat: Setting up the thermostat

The thermostat command is used to change settings of the thermostat.

The different available thermostats will be described in the following subsections. Note
that for a simulation of the NPT ensemble, you need to use a standard thermostat for
the particle velocities (e.g. Langevin or DPD), and a thermostat for the box geometry
(e.g. the isotropic NPT thermostat).

You may combine different thermostats at your own risk by turning them on one by
one. Note that there is only one temperature for all thermostats.

Syntax

(1) thermostat

(2) thermostat off

(3) thermostat parameters

Description

Variant (1) returns the thermostat parameters. A Tcl list is given containing all
the parameters needed to set the specific thermostat. (exactly the same as the input
command line, without the preceding thermostat).

Variant (2) turns off all thermostats and sets all thermostat variables to zero. Setting
temperature to zero also affects the way in which electrostatics are handled (see also
Section 5.6).

Variant (3) sets up one of the thermostats described below.

6.2.1. Langevin thermostat

Syntax

thermostat langevin temperature gamma

Description

The Langevin thermostat consists of a friction and noise term coupled via the fluctuation-
dissipation theorem. The friction term is a function of the particle velocities. For a more
detailed explanation, refer to [10, 20].

If the feature ROTATION is compiled in, the rotational degrees of freedom are also
coupled to the thermostat.

Using the Langevin thermostat, it is posible to set a temperature and a friction coef-
ficient for every particle individually. Consult the part commands reference (chapter 4)
for information on how to achieve this.

70

6.2.2. Dissipative Particle Dynamics (DPD)

ESPResSo implements Dissipative Particle Dynamics (DPD) either via a global thermo-
stat, or via a thermostat and a special DPD interaction between particle types. The
latter allows the user to specify friction coefficients on a per-interaction basis.

Thermostat DPD

Syntax

thermostat dpd temperature gamma r cut [WF wf tgamma tr cut TWF twf]

Required features: DPD or TRANS_DPD

Description

ESPResSo’s standard DPD thermostat implements the thermostat exactly as described in
[47]. We use the standard Velocity-Verlet integration scheme, e.g. DPD only influences
the calculation of the forces. No special measures have been taken to self-consistently
determine the velocities and the dissipative forces as it is for example described in [35].
DPD adds a velocity dependent dissipative force and a random force to the usual con-
servative pair forces (e.g. Lennard-Jones).

The dissipative force is calculated by

~FDij = −ζwD(rij)(r̂ij · ~vij)r̂ij

The random force by

~FRij = σwR(rij)Θij r̂ij

where Θij ∈ [−0.5, 0.5[is a uniformly distributed random number. The connection of
σ and ζ is given by the dissipation fluctuation theorem:

(σwR(rij)
2 = ζwD(rij)kBT

The parameters gamma r cut define the strength of the friction ζ and the cutoff
radius.

According to the optional parameter WF (can be set to 0 or 1, default is 0) of the
thermostat command the functions wD and wR are chosen in the following way (rij <
r cut) :

wD(rij) = (wR(rij))
2 =

{
(1− rij

rc
)2 , WF = 0

1 , WF = 1

For rij ≥ r cut wD and wR are identical to 0 in both cases.

The friction (dissipative) and noise (random) term are coupled via the fluctuation-
dissipation theorem. The friction term is a function of the relative velocity of particle
pairs. The DPD thermostat is better for dynamics than the Langevin thermostat, since
it mimics hydrodynamics in the system.

71

When using a Lennard-Jones interaction, r cut = 2
1
6σ is a good value to choose, so

that the thermostat acts on the relative velocities between nearest neighbor particles.
Larger cutoffs including next nearest neighbors or even more are unphysical.

gamma is basically an inverse timescale on which the system thermally equilibrates.
Values between 0.1 and 1 are o.k, but you propably want to try this out yourself to get
a feeling for how fast temperature jumps during a simulation are. The dpd thermostat
does not act on the system center of mass motion. Therefore, before using dpd, you have
to stop the center of mass motion of your system, which you can achieve by using the
command galileiTransformParticles 11.1. This may be repeated once in a while for
long runs due to round off errors (check this with the command system_com_vel) 11.1.

Two restrictions apply for the dpd implementation of ESPResSo:

• As soon as at least one of the two interacting particles is fixed (see 4 on how to fix
a particle in space) the dissipative and the stochastic force part is set to zero for
both particles (you should only change this hardcoded behaviour if you are sure
not to violate the dissipation fluctuation theorem).

• DPD does not take into account any internal rotational degrees of freedom of the
particles if ROTATION is switched on. Up to the current version DPD only acts on
the translatorial degrees of freedom.

Transverse DPD thermostat This is an extension of the above standard DPD ther-
mostat [26], which dampens the degrees of freedom perpendicular on the axis between
two particles. To switch it on, the feature TRANS_DPD is required instead of the feature
DPD.

The dissipative force is calculated by

~FDij = −ζwD(rij)(I − r̂ij ⊗ r̂ij) · ~vij
The random force by

~FRij = σwR(rij)(I − r̂ij ⊗ r̂ij) · ~Θij

The parameters tgamma tr cut define the strength of the friction and the cutoff in
the same way as above. Note: This thermostat does not conserve angular momentum.

Interaction DPD

Syntax
thermostat inter_dpd temperature

Required features: INTER_DPD

Description
Another way to use DPD is by using the interaction DPD. In this case, DPD is imple-
mented via a thermostat and corresponding interactions. The above command will set
the global temperature of the system, while the friction and other parameters have to

72

be set via the command inter inter_dpd (see 5.8.2 on page 66). This allows to set the
friction on a per-interaction basis.

Other DPD extensions

The features DPD_MASS_RED or DPD_MASS_LIN make the friction constant mass depen-
dent:

ζ → ζMij

and
ζ → ζMij

There are two implemented cases. DPD_MASS_RED uses the reduced mass:

Mij = 2
mimj

mi +mj

while DPD_MASS_LIN uses the real mass mass:

Mij =
mi +mj

2

The prefactors are such that equal masses result in a factor 1.

6.2.3. Isotropic NPT thermostat

Syntax
thermostat npt_isotropic temperature gamma0 gammaV

Required features: NPT

Description
This theormstat is based on the Anderson thermostat (see [1, 33]) and will thermalize
the box geometry. It will only do isotropic changes of the box.

Be aware that this feature is neither properly examined for all systems nor is it main-
tained regularly. If you use it and notice strange behaviour, please contribute to solving
the problem.

6.3. nemd: Setting up non-equilibrium MD

Syntax

(1) nemd exchange n slabs n exchange
(2) nemd shearrate n slabs shearrate
(3) nemd off

(4) nemd

(5) nemd profile

(6) nemd viscosity

Required features: NEMD

73

Description
Use NEMD (Non Equilibrium Molecular Dynamics) to simulate a system under shear
with help of an unphysical momentum change in two slabs in the system.

Variants (1) and (2) will initialise NEMD. Two distinct methods exist. Both methods
divide the simulation box into n slab slabs that lie parallel to the x-y-plane and apply a
shear in x direction. The shear is applied in the top and the middle slabs. Note, that the
methods should be used with a DPD thermostat or in an NVE ensemble. Furthermore,
you should not use other special features like part fix or constraints inside the top
and middle slabs. For further reference on how NEMD is implemented into ESPResSo
see [46].

Variant (1) chooses the momentum exchange method. In this method, in each step the
n exchange largest positive x-components of the velocity in the middle slab are selected
and exchanged with the n exchange largest negative x-components of the velocity in the
top slab.

Variant (2) chooses the shear-rate method. In this method, the targetted x-component
of the mean velocity in the top and middle slabs are given by

target velocity = ±shearrate
Lz
4

(6.1)

where Lz is the simulation box size in z-direction. During the integration, the x-
component of the mean velocities of the top and middle slabs are measured. Then,
the difference between the mean x-velocities and the target x-velocities are added to the
x-component of the velocities of the particles in the respective slabs.

Variant (3) will turn off NEMD, variant (4) will print usage information of the param-
eters of NEMD. Variant (5) will return the velocity profile of the system in x-direction
(mean velocity per slab).

Variant (6) will return the viscosity of the system, that is computed via

η =
F

γ̇LxLy
(6.2)

where F is the mean force (momentum transfer per unit time) acting on the slab, LxLy
is the area of the slab and γ̇ is the shearrate.

6.4. cellsystem: Setting up the cell system

This section deals with the flexible particle data organization of ESPResSo. Due to
different needs of different algorithms, ESPResSo is able to change the organization of
the particles in the computer memory, according to the needs of the used algorithms.
For details on the internal organization, refer to section 14.1 on page 167.

6.4.1. Domain decomposition

Syntax

cellsystem domain_decomposition [-no_verlet_list]

74

Description

This selects the domain decomposition cell scheme, using Verlet lists for the calculation
of the interactions. If you specify -no_verlet_list, only the domain decomposition is
used, but not the Verlet lists.

The domain decomposition cellsystem is the default system and suits most applica-
tions with short ranged interactions. The particles are divided up spatially into small
compartments, the cells, such that the cell size is larger than the maximal interaction
range. In this case interactions only occur between particles in adjacent cells. Since
the interaction range should be much smaller than the total system size, leaving out
all interactions between non-adjacent cells can mean a tremendous speed-up. Moreover,
since for constant interaction range, the number of particles in a cell depends only on
the density. The number of interactions is therefore of the order N instead of order N2

if one has to calculate all pair interactions.

6.4.2. N-squared

Syntax

cellsystem nsquare

Description

This selects the very primitive nsquared cellsystem, which calculates the interactions for
all particle pairs. Therefore it loops over all particles, giving an unfavorable computation
time scaling of N2. However, algorithms like MMM1D or the plain Coulomb interaction
in the cell model require the calculation of all pair interactions.

In a multiple processor environment, the nsquared cellsystem uses a simple particle
balancing scheme to have a nearly equal number of particles per CPU, i.e. n nodes have
m particles, and p−n nodes have m+1 particles, such that n∗m+(p−n)∗(m+1) = N ,
the total number of particles. Therefore the computational load should be balanced
fairly equal among the nodes, with one exception: This code always uses one CPU for
the interaction between two different nodes. For an odd number of nodes, this is fine,
because the total number of interactions to calculate is a multiple of the number of
nodes, but for an even number of nodes, for each of the p − 1 communication rounds,
one processor is idle.

E.g. for 2 processors, there are 3 interactions: 0-0, 1-1, 0-1. Naturally, 0-0 and 1-1 are
treated by processor 0 and 1, respectively. But the 0-1 interaction is treated by node 1
alone, so the workload for this node is twice as high. For 3 processors, the interactions
are 0-0, 1-1, 2-2, 0-1, 1-2, 0-2. Of these interactions, node 0 treats 0-0 and 0-2, node 1
treats 1-1 and 0-1, and node 2 treats 2-2 and 1-2.

Therefore it is highly recommended that you use nsquared only with an odd number
of nodes, if with multiple processors at all.

75

6.4.3. Layered cell system

Syntax

cellsystem layered n layers

Description

This selects the layered cell system, which is specifically designed for the needs of the
MMM2D algorithm. Basically it consists of a nsquared algorithm in x and y, but a
domain decomposition along z, i. e. the system is cut into equally sized layers along the
z axis. The current implementation allows for the cpus to align only along the z axis,
therefore the processor grid has to have the form 1x1xN. However, each processor may
be responsible for several layers, which is determined by n layers, i. e. the system is
split into N*n layers layers along the z axis. Since in x and y direction there are no
processor boundaries, the implementation is basically just a stripped down version of
the domain decomposition cellsystem.

6.5. AdResS

Syntax

adress set topo kind width width hybrid width center x R x wf wf

Required features: ADRESSO

Description

where kind determines the type of AdResS simulation:
0 disabled
1 constant weight function
2 one dimensional splitting
3 spherical splitting

wf the type of weighting function:
0 standard
1 user defined

width and hybrid width are the widths of the explicit and hybrid regions respectively and
R x is the x position of the center of the explicit zone. For more details on the method
itself see [38, 39, 37]. And for further information about the technical implementation
see [25].

6.6. CUDA

Syntax

(1) cuda list

(2) cuda setdevice id
(3) cuda getdevice

76

Description

This command can be used to choose the GPU for all subsequent GPU-computations.
Note that due to driver limitations, the GPU cannot be changed anymore after the first
GPU-using command has been issued, for example lbfluid. If you do not choose the
GPU manually before that, CUDA internally chooses one, which is normally the most
powerful GPU available, but load-independent.

Variant (1) lists the available devices by their ids and brand names. Variant (2) allows
to choose the device by its id, which can be determined using cuda list, or for example
the deviceQuery example code in the CUDA SDK. Variant (3) finally gives the id of
the currently active GPU.

6.7. Creating bonds when particles collide

With the help of the feature COLLISION_DETECTION, bonds between particles can be
created automatically during the simulation, every time two particles collide. This is
useful for simulations of chemical reactions and irreversible adhesion processes.

Two methods of binding are available: In the “bind centers“ method, a bonded in-
teraction is added between the colliding particles. This leads to the distance between
the particles being fixed, the particles can, however still slide around each other. The
second method, called “bind at point of collision“, aims to prevent this sliding at the
the contact. This is achieved by creating two virtual sites at the point of collision.
They are rigidly connectd to the colliding particles, respectively. A bond is then created
between the virtual sites, or an angular bond between the two real particles and the
virtual particles. In the latter case, the virtual particles are the centers of the angle
potentials (particle 2 in the description of the angle potential, see 5.4). Due to the rigid
connection between each of the particles in the collision and its respective virtual site,
a sliding at the contact point is no longer possible. See the documentation on rigid
bodies for details. In addition to the bond between the virtual sites, the bond between
the colliding particles is also created. You can either use a real bonded interaction to
prevent wobbling around the point of contact or you can use a virtual bond to prevent
additional force contributions, at the expensive of RATTLE, see 5.3.4.

The following limitations currently apply for the collision detection:

• The method is currently limited to simulations with a single cpu

• No distinction is currently made between different particle types

• The “bind at point of collision” approach requires the VIRTUAL_SITES_RELATIVE

feature

• The “bind at point of collision” approach cannot handle collisions between virtual
sites

77

Syntax

(1) collision_detection

(1) collision_detection off

(2) collision_detection bind_centers d bond1
(3) collision_detection bind_at_point_of_collision d bond1 bond2 type

Description
Here, d is the distance at which the bond is created, bond1 denotes the type of the

bond created between the colliding partecles, and bond2 determines the type of the bond
created between the virtual sites (if applicable). bond1 needs to denote a pair bond, like
FENE or harmonic, bond2 can be either a pair or a triple (angle) bond. If it is a pair
bond, it connects the two virtual particles, otherwise it constraints the angle between
the two real particles around the virtual ones. Type denotes the particle type of the
virtual sites created at the point of collision (if applicable). Be sure not to define a
Lennard-Jones interaction for this particle type, as two particles will be generated in the
same place.

78

7. Running the simulation

7.1. integrate: Running the simulation

Syntax

(1) integrate steps
(2) integrate set [nvt]
(3) integrate set npt_isotropic pext piston [x y z] [-cubic_box]

Description

ESPResSo uses the Velocity Verlet algorithm for the integration of the equations of
motion. The command integrate with an integer steps as parameter integrates the
system for steps time steps.

Two methods for the integration can be set: For an NVT ensemble (thermostat) and
for an NPT isotropic ensemble (barostat). The current method can be detected with
the command integrate set without any parameters.

The NVT integrator is set without parameters (the temperature can be set with the
thermostat). For the NPT ensemble, the parameters that can be added are:

• pext The external pressure as float variable. This parameter is required.

• piston The mass of the applied piston as float variable. This parameter is required.

• x y z Three integers to set the box geometry for non-cubic boxes. This parameter
is optional.

• -cubic_box If this optional parameter is added, a cubic box is assumed.

7.2. change_volume: Changing the box volume

Syntax

(1) change_volume Vnew

(2) change_volume Lnew (x | y | z | xyz)

Description

Changes the volume of either a cubic simulation box to the new volume Vnew or its
given x-/y-/z-/xyz-extension to the new box-length Lnew, and isotropically adjusts the
particles coordinates as well. The function returns the new volume of the deformed
simulation box.

79

7.3. Stopping particles

Syntax

(1) stopParticles

(2) stop_particles

Description

Halts all particles in the current simulation, setting their velocities and forces to zero.
Variant (2) does not provide feedback on the execution status.

7.4. velocities: Setting the velocities

Syntax

velocities vmax [start pid] [count N]

Description

Sets the velocities of the particles with particle IDs between pid and pid +N to a random
vector with a length less than vmax, and returns the absolute value of the total velocity
assigned. By default, all particles are affected.

7.5. invalidate_system

Syntax

invalidate_system

Description

Forces a system re-init which, among others, causes the integrator to also update the
forces at its beginning (instead of re-using the values from the previous integration
step). This is particularly necessary to ensure continuity after setting a checkpoint:
integrate - set_checkpoint - integrate has only one call to the force calculation
routine, while read_checkpoint - integrate has two at the beginning of the integrate
command (because loading a new system from disk typically requires re-initializing the
system), and since the forces routine also uses the thermostat which in turn draws
random numbers, the two situations do not end up at the same segment of the random
number sequence, all random events will therefore slightly differ. To prevent this, simply
include a call to invalidate_system upon setting the checkpoint, because in that case
both scenarios will call the forces routine twice at the beginning of the second integration
phase thus having their random number sequences in total sync.

Without applying this command directly before or after writing a checkpoint, you will
run into a different state of the random number generator when reading the checkpoint
to start again later!

80

7.6. Parallel tempering

Syntax
parallel_tempering::main -rounds N -swap swap -perform perform

[-init init] [-values {Ti}] [-connect master] [-port port]
[-load jnode] [-resrate Nreset] [-info info]

Description
This command can be used to run a parallel tempering simulation. Since the simulation
routines and the calculation of the swap probabilities are provided by the user, the
method is not limited to sampling in the temperature space. However, we assume in
the following that the sampled values are temperatures, and call them accordingly. It is
possible to use multiple processors via TCP/IP networking, but the number of processors
can be smaller than the number of temperatures.

Arguments
• swap specifies the name of the routine calculating the swap probability for a sys-

tem. The routine has to accept three parameters: the id of the system to evaluate,
and two temperatures T1 and T2 . The routine should return a list containing
the energy of the system at temperatures T1 and T2 , respectively.

• perform specifies the name of the routine performing the simulation between two
swap tries. The routine has to accept two parameters: the id of the system to
propagate and the temperature T at which to run it. Return values are ignored.

• init specifies the name of a routine initializing a system. This routine can for
example create the particles, perform some intial equilibration or open output
files. The routine has to accept two parameters: the id of the system to initialize
and its initial temperature T . Return values are ignored.

•R specifies the number of swap trial rounds; in each round, neighboring temper-
atures are tried for swapping alternatingly, i.e. with four temperatures, The first
swap trial round tries to swap 1↔ 2 and 3↔ 4, the second round 2↔ 3, and so
on.

•master the name of the host on which the parallel tempering master node is run-
ning.

• port the TCP/IP port on which the parallel tempering master should listen. This
defaults to 12000.

• jnode specifies how many systems to run per ESPResSo-instance. If this is more
than 1, it is the user’s responsibility to manage the storage of configurations, see
below for examples. This defaults to 1.

•Rreset specifies after how many swap trial rounds to reset the counters for the
acceptance rate statistics. This defaults to 10.

• info specifies which output the parallel tempering code should produce:

81

none parallel tempering will be totally quiet, except for fatal errors

comm information on client activities, such as connecting, is printed to stderr

all print lots of information on swap energies and probabilities to stdout. This
is useful for debugging and quickly checking the acceptance rates.

This defaults to all.

Introduction

The basic idea of parallel tempering is to run N simulations with configurations Ci in
parallel at different temperatures T1 < T2 < . . . < TN , and exchange configurations
between neighboring temperatures. This is done according to the Boltzmann rule, i.e.
the swap probability for two configurations A and B at two different parameters T1 and
T2 is given by

min (1, exp− [β(T2)UA(T2) + β(T1)UB(T1)− β(T1)UA(T1)− β(T2)UB(T2)]) , (7.1)

where UC(T) denotes the potential energy of configuration C at parameter T and β(T)
the corresponding inverse temperature. If T is the temperature, UC is indepedent of T ,
and β(T) = 1/(kBT). In this case, the swap probability reduces to the textbook result

min(1, exp− [(1/T2 − 1/T1) (UA − UB) /kB] . (7.2)

However, T can also be chosen to be any other parameter, for example the Bjerrum
length, i.e. the the strength of the electrostatic interaction. In this case, β(T) = β is a
constant, but the energy UC(T) of a configuration C depends on T , and one needs the
full expression (7.1). ESPResSo always uses this expression.

In practice, one does not swap configurations, but temperatures, simply because ex-
changing temperatures requires much less communication than exchanging the properties
of all particles.

Th ESPResSo implementation of parallel tempering repeatedly propagates all config-
urations Ci and tries to swap neighboring temperatures. After the first propagation,
the routine attempts to swap temperatures T1 and T2, T3 and T4, and so on. After the
second propagation, swaps are attempted between temperatures T2 and T3, T4 and T5,
and so on. For the propagation, parallel tempering relies on a user routine; typically,
one will simply propagate the configuration by a few 100 MD time steps.

Details on usage and an example

The parallel tempering code has to be loaded explicitely by source "scripts/parallel_-

tempering.tcl" from the Espresso directory. To make use of the parallel tempering
tool, one needs to implement three methods: the propagation, the energy calculation
and an initialization routine for a configuration. A typical initialization routine will look
roughly like this:

proc init {id temp} {

82

create output files for temperature temp

set f [open "out-$temp.dat" w]; close $f

init_particle_positions

thermostat langevin $temp 1.0

equilibration_integration

global config

set config($id) "{[part]} [setmd time]"

}

The last two lines are only necessary if each instance of ESPResSo handles more than
one configuration, e.g. if you have 300 temperatures, but only 10 ESPResSo processes
(i.e.-load 30). In this case, all user provided routines need to save and restore the
configurations. Saving the time is not necessary because the simulation tine across swaps
is not meaningful anyways; it is however convenient for investigating the (temperature-
)history of individual configurations.

A typical propagation routine accordingly looks like this

proc perform {id temp} {

global config

particle delete

foreach p [lindex $config($id) 0] { eval part $p }

setmd time [lindex $config($id) 1]

thermostat langevin $temp 1.0

set f [open "out-$temp.dat" a];

integrate 1000

puts $f "[setmd time] [analyze energy]"

close $f

set config($id) "{[part]} [setmd time]"

}

Again, the saving and storing of the current particle properties in the config array are
only necessary if there is more than one configuration per process. In practice, one will
rescale the velocities at the beginning of perform to match the current temperature,
otherwise the thermostat needs a short time to equilibrate. The energies necessary to
determine the swap probablility are calculated like this:

proc swap {id temp1 temp2} {

global config

particle delete

foreach p $config($id) { eval part $p }

set epot [expr [analyze energy total] - [analyze energy kinetic]]

return "[expr $epot/$temp1] [expr $epot/$temp2]"

}

Note that only the potential energy is taken into account. The temperature enters only
indirectly through the inverse temperature prefactor, see Eqn. (7.1).

The simulation is then started as follows. One of the processes runs the command

83

for {set T 0} {$T < 3} {set T [expr $T + 0.01]} {

lappend temperatures $T }

parallel_tempering::main -load 30 -values $temperatures -rounds 1000 \

-init init -swap swap -perform perform

This command turns the ESPResSo instance executing it into the master part of the
parallel tempering simulation. It waits until a sufficient number of clients has connected.
This are additional ESPResSo instances, which are identical to the master script, except
that they execute

parallel_tempering::main -connect $host -load 30 \

-init init -swap swap -perform perform

Here, host is a variable containing the TCP/IP hostname of the computer running
the master process. Note that the master process waits until enough processes have
connected to start the simulation. In the example, there are 300 temperatures, and each
process, including the master process, will deal with 30 of them. Therefore, 1 master
and 9 slave processes are required. For a typical queueing system, a starting routine
could look like this:

master=

for h in $HOSTS; do

if ["$master" == ""]; then

ssh $h "cd run; ./pt_test.tcl"

master=$h;

else

ssh $h "cd run; ./pt_test.tcl -connect $host"

fi

done

where pt_test.tcl passes the -connect option on to parallel_tempering::main.

Sharing data

Syntax

parallel_tempering::set_shareddata data

Description

can be used at any time by the master process to specify additional data that is available
on all processes of the parallel tempering simulation. The data is accessible from all
processes as parallel_tempering::shareddata.

84

7.7. Metadynamics

Syntax

(1) metadynamics

(2) metadynamics set off

(3) metadynamics set distance pid1 pid2 dmin dmax bheight bwidth fbound

dbins

(4) metadynamics set relative_z pid1 pid2 zmin zmax bheight bwidth fbound

zbins

(5) metadynamics print_stat current_coord

(6) metadynamics print_stat coord_values

(7) metadynamics print_stat profile

(8) metadynamics print_stat force

(9) metadynamics load_stat profile list force list
Required features: METADYNAMICS

Description

Performs metadynamics sampling. Metadynamics is an efficient scheme to calculate the
potential of mean force of a system as a function of a given reaction coordinate from
a canonical simulation. The user first chooses a reaction coordinate (e.g. distance)
between two particles (pid1 and pid2). As the system samples values along this reaction
coordinate (here the distance between pid1 and pid2), an iterative biased force pulls the
system away from the values of the reaction coordinate most sampled. Ultimately, the
system is driven in such a way that it self-diffuses along the reaction coordinate between
the two boundaries (here dmin and dmax). The potential of mean force (or free energy
profile) can be extracted by reading the profile.

Arguments

• pid1 ID of the first particle involved in the metadynamics scheme.

• pid2 ID of the second particle involved in the metadynamics scheme.

• dmin, zmin : minimum value of the reaction coordinate. While dmin must be
positive (it’s a distance), zmin can be negative since it’s the relative height of pid1

with respect to pid2 .

• dmax, zmax : maximum value of the reaction coordinate.

• bheight height of the bias function.

• bwidth width of the bias function.

• fbound strength of the ramping force at the boundaries of the reaction coordinate
interval.

• dbins, zbins : number of bins of the reaction coordinate.

• profile list Tcl list of a previous metadynamics profile.

85

• force list Tcl list of a previous metadynamics force.

Details on usage

Variant (1) returns the status of the metadynamics routine. Variant (2) turns metady-
namics off (default value). Variant (3) sets a metadynamics scheme with the reaction
coordinate distance, which corresponds to the distance between any two particles of the
system (e.g. calculate the potential of mean force of the end-to-end distance of a poly-
mer). Variant (4) sets a metadynamics scheme with the reaction coordinate relative_z:
relative height (i.e. z coordinate) of particle pid1 with respect to pid2 (e.g. calculate the
potential of mean force of inserting one particle pid1 through an interface with center of
mass pid2). Variant (5) prints the current value of the reaction coordinate. Variant (6)
prints a list of the binned values of the reaction coordinate (e.g. dbins values between
dmin and dmax). Variant (7) prints the current potential of mean force for all values of
the reaction coordinate considered. Variant (8) prints the current force (norm rather
than vector) for all values of the reaction coordinate considered. Variant (9) loads a
previous metadynamics sampling by reading a Tcl list of the potential of mean force and
applied force. This is especially useful to restart a simulation.

Note that the metadynamics scheme works seamlessly with the VIRTUAL SITES
feature, allowing to define centers of mass of groups of particles as end points of the
reaction coordinate. One can therefore measure the potential of mean force of the
distance between a particle and a molecule or interface.

The metadynamics scheme has (as of now) only been implemented for one processor:
MPI usage is not supported. However, one can speed up sampling by communicating the
profile and force between independent simulations (denoted walkers). The print_-

stat and load_stat can be used to input/output metadynamics information between
walkers at regular intervals. Warning: the information extracted from print_stat con-
tains the entire history of the simulation, while only the last increment of sampling
should be communicated between walkers in order to avoid counting the same samples
multiple times.

Details on implementation

As of now, only two reaction coordinates have been implemented: distance and relative_-

z. Many different reaction coordinates can be set up, and it is rather easy to implement
new ones. See the code in metadynamics.{h,c} for further details.

The bias functions that are applied to the potential of mean force and the biased
force are not gaussian function (as in many metadynamics codes) but so-called Lucy
functions. See [34] for more details. These avoid the calculation of exponentials.

86

8. Analysis in Tcl

ESPResSo has two fundamentally different classes of observables for analyzing the sys-
tems. On the one hand, some observables are computed from the Tcl level. In that
case, the observable is measured in the moment that the corresponding Tcl function is
called, and the results are returned to the Tcl script. In general, observables in this class
should only be computed after a large number of timesteps, as switching forth and back
between the C- and the Tcl-level is costly. This chapter describes all observables in this
class.

On the other hand, some observables are computed and stored in the C-core of
ESPResSo during a call to the function integrate, while they are set up and their
results are collected from the Tcl level. These observables are more complex to im-
plement and offer less flexibility, while the are significantly faster and more memory
efficient, and they can be set up to be computed every few timesteps. The observables
in this class are described in chapter 9.

The class of Tcl-level analysis functions is mainly controlled via the analyze command.
It has two main uses: Calculation of observables (analyze observable) and definition and
analysis of topologies in the system (analyze topologycommand). In addition, ESPResSo
offers the command uwerr (see section 8.4 for computing statistical errors in time series.

8.1. Available observables

The command analyze provides online-calculation of local and global observables.

8.1.1. Minimal distances between particles

Syntax

(1) analyze mindist [type list a type list b]
(2) analyze distto pid
(3) analyze distto x y z

Description

Variant (1) returns the minimal distance between two particles in the system. If the
type-lists are given, then the minimal distance between particles of only those types is
determined.

distto returns the minimal distance of all particles to particle pid (variant (2)), or
to the coordinates (x , y , z) (Variant (3)).

87

8.1.2. Particles in the neighbourhood

Syntax

(1) analyze nbhood pid r catch
(2) analyze nbhood x y z rcatch

Description
Returns a Tcl-list of the particle ids of all particles within a given radius r catch around
the position of the particle with number pid in variant (1) or around the spatial coordi-
nate (x , y , z) in variant (2).

8.1.3. Particle distribution

Syntax

analyze distribution part type list a part type list b
[rmin [rmax [rbins [log flag [int flag]]]]]

Description
Returns its parameters and the distance distribution of particles with types specified in
part type list a around particles with types specified in part type list b with distances
between rmin and rmax , binned into rbins bins. The bins are either equidistant (if
log flag = 0) or logarithmically equidistant (if log flag ≥ 1). If an integrated distribution
is required, use int flag = 1. The distance is defined as the minimal distance between a
particle of one group to any of the other group.

Output format
The output corresponds to the blockfile format (see section 10.1 on page 115):

{ parameters }
{
{ r dist(r) }
...

}

8.1.4. Radial density map

Syntax

analyze radial_density_map xbins ybins xrange yrange
[axisofrotation centerofrotation beadtypelist [thetabins]]

Description
Returns the radial density of particles around a given axis. Parameters are:

• xbins histogram bins in x direction.

• ybins histogram bins in y direction.

88

• xrange range for analysis in x direction.

• yrange range for analysis in y direction.

• axisofrotation rotate around given axis. (x, y, or z)

• centerofrotation rotate around given point.

• beadtypelist only analyze beads of given types.

• thetabins histogram bins in angle theta.

8.1.5. Modes

Syntax

analyze modes2d

Description
Analyzes the modes of a configuration. Requires that a grid is set and that the system
contains more than two particles. Output are four numbers in the order:

htRE htIM θRE θIM

8.1.6. Lipid orientation

Syntax
(1) analyze get_lipid_orients

(2) analyze lipid_orient_order

Description

8.1.7. Bilayers

Syntax
(1) analyze bilayer_set

(2) analyze bilayer_density_profile

Description

8.1.8. GPB

Syntax
analyze cell_gpb Manningparameter outercellradius innercellradius

[accuracy [numberofinteractions]]

Description

8.1.9. Get folded positions

Syntax

analyze get_folded_positions [-molecule] [shift x y z]

89

Description
Outputs the folded positions of particles. Without any parameters, the positions of all
particles are given, folded to the box length. The optional parameter -molecule ensures
that molecules (particle groups) are kept intact. The optional shift parameters can be
used to shift the not separated molecules if needed.

8.1.10. Vkappa

Syntax

analyze Vkappa [(reset | read | set Vκ,1 Vκ,2 avk)]

Description

8.1.11. Radial distribution function

Syntax

analyze (rdf | <rdf>) part type list a part type list b [rmin rmax rbins]

Description
Returns its parameters and the radial distribution function (rdf) of particles with types
specified in part type list a around particles with types specified in part type list b. The
range is given by rmin and rmax and is divided into rbins equidistant bins.

Output format
The output corresponds to the blockfile format (see section 10.1 on page 115):

{ parameters }
{
{ r rdf (r) }
...

}

8.1.12. Structure factor

Syntax

analyze structurefactor type order

Description
Returns the spherically averaged structure factor S(q) for particles of a given type type.
The S(q) is calculated for all possible wave vectors, 2π

L <= q <= 2π
L order . Do not chose

parameter order too large, because the number of calculations grows as order3.

Output format
The output corresponds to the blockfile format (see section 10.1 on page 115):

{ q value S (q) value }
...

90

8.1.13. Van-Hove autocorrelation function G(r, t)

Syntax

analyze vanhove type rmin rmax rbins [tmax]

Description
Returns the van Hove auto correlation function G(r, t) and the mean square displacement
msd(t) for particles of type ptype for the configurations stored in the array configs. This
tool assumes that the configurations stored with analyze append (see section 8.3 on
page 101) are stored at equidistant time intervals. G(r, t) is calculated for each multiple
of this time intervals. For each time t the distribution of particle displacements is
calculated according to the specification given by rmin, rmax and rbins. Optional
argument tmax defines the maximum value of t for which G(r, t) is calculated. If it is
omitted or set to zero, maximum possible value is used. If the particles perform a random
walk (i.e. a normal diffusion process) G(r, t)/r2 is a Gaussian distribution for all times.
Deviations of this behavior hint on another diffusion process or on the fact that your
system has not reached the diffusive regime. In this case it is also very questionable to
calculate a diffusion constant from the mean square displacement via the Stokes-Einstein
relation.

Output format
The output corresponds to the blockfile format (see section 10.1 on page 115):

{ msd { msd(0) msd(1) ... } }
{ vanhove { { G(0 , 0) G(1 , 0) ... }

{ G(0 , 1) G(1 , 1) ... }
...

}
}

The G(r, t) are normalized such that the integral over space always yields 1.

8.1.14. Center of mass

Syntax

analyze centermass partt ype

Description
Returns the center of mass of particles of the given type.

8.1.15. Moment of inertia matrix

Syntax

(1) analyze momentofinertiamatrix typeid
(2) analyze find_principal_axis typeid

91

Description

Variant (1) returns the moment of inertia matrix for particles of given type typeid . The
output is a list of all the elements of the 3x3 matrix. Variant (2) returns the eigenvalues
and eigenvectors of the matrix.

8.1.16. Gyration tensor

Syntax

analyze gyration_tensor [typeid]

Description

Analyze the gyration tensor of particles of a given type typeid , or of all particles in the
system if no type is given. Returns a Tcl-list containing the squared radius of gyration,
three shape descriptors (asphericity, acylindricity, and relative shape anisotropy), eigen-
values of the gyration tensor and their corresponding eigenvectors. The eigenvalues are
sorted in descending order.

8.1.17. Aggregation

Syntax

analyze aggregation dist criteria s mol id f mol id
[min contact [charge criteria]]

Description

Returns the aggregate size distribution for the molecules in the molecule id range
s mol id to f mol id . If any monomers in two different molecules are closer than
dist criteria they are considered to be in the same aggregate. One can use the op-
tional min contact parameter to specify a minimum number of contacts such that only
molecules having at least min contact contacts will be considered to be in the same
aggregate. The second optional parameter charge criteria enables one to consider ag-
gregation state of only oppositely charged particles.

8.1.18. Identifying pearl-necklace structures

Syntax

analyze necklace pearl threshold back dist space dist first length

Description

Algorithm for identifying pearl necklace structures for polyelectrolytes in poor solvent
[30]. The first three parameters are tuning parameters for the algorithm: pearl threshold
is the minimal number of monomers in a pearl. back dist is the number of monomers
along the chain backbone which are excluded from the space distance criterion to form
clusters. space dist is the distance between two monomers up to which they are consid-
ered to belong to the same clusters. The three parameters may be connected by scaling

92

arguments. Make sure that your results are only weakly dependent on the exact choice
of your parameters. For the algorithm the coordinates stored in partCfg are used. The
chain itself is defined by the identity first of its first monomer and the chain length
length. Attention: This function is very specific to the problem and might not give
useful results for other cases with similar structures.

8.1.19. Finding holes

Syntax

analyze holes typeidprobe mesh size

Description

Function for the calculation of the unoccupied volume (often also called free volume)
in a system. Details can be found in Schmitz and Muller-Plathe [43]. It identifies free
space in the simulation box via a mesh based cluster algorithm. Free space is defined
via a probe particle and its interactions with other particles which have to be defined
through LJ interactions with the other existing particle types via the inter command
before calling this routine. A point of the mesh is counted as free space if the distance of
the point is larger than LJ cut+LJ offset to any particle as defined by the LJ interaction
parameters between the probe particle type and other particle types. How to use this
function: Define interactions between all (or the ones you are interested in) particle
types in your system and a fictitious particle type. Practically one uses the van der
Waals radius of the particles plus the size of the probe you want to use as the Lennard
Jones cutoff. The mesh spacing is the box length divided by the meshs ize.

Output format

{ n holes mean hole size max hole size free volume fraction
{ sizes }
{ surfaces }
{ element lists }

}

A hole is defined as a continuous cluster of mesh elements that belong to the unoccu-
pied volume. Since the function is quite rudimentary it gives back the whole information
suitable for further processing on the script level. sizes and surfaces are given in number
of mesh points, which means you have to calculate the actual size via the corresponding
volume or surface elements yourself. The complete information is given in the element -
lists for each hole. The element numbers give the position of a mesh point in the linear
representation of the 3D grid (coordinates are in the order x, y, z). Attention: the algo-
rithm assumes a cubic box. Surface results have not been tested. Requires the feature
LENNARD JONES. .

93

8.1.20. Energies

Syntax

(1) analyze energy

(2) analyze energy (total | kinetic | coulomb | magnetic)
(3) analyze energy bonded bondid
(4) analyze energy nonbonded typeid1 typeid2

Description

Returns the energies of the system. Variant (1) returns all the contributions to the
total energy. Variant (2) returns the numerical value of the total energy or its kinetic
or Coulomb or magnetic contributions only. Variants (3) and (4) return the energy
contributions of the bonded resp. non-bonded interactions.

Output format (variant (1))

{ energy value } { kinetic value } { interaction value } ...

8.1.21. Pressure

Syntax

(1) analyze pressure

(2) analyze pressure total

(3) analyze pressure (totals | ideal | coulomb |
tot_nonbonded_inter | tot_nonbonded_intra)

(4) analyze pressure bonded bondid
(5) analyze pressure nonbonded typeid1 typeid2
(6) analyze pressure nonbonded_intra [typeid]
(7) analyze pressure nonbonded_inter [typeid]

Description

Computes the pressure and its contributions in the system. Variant (1) returns all
the contributions to the total pressure. Variant (2) will return the total pressure only.
Variants (3), (4) and (5) return the corresponding contributions to the total pressure.

Warning: Pressure works only with certain interactions and features. Read
in detail before use!

The pressure is calculated (if there are no electrostatic interactions) by

p =
2Ekinetic
V f

+

∑
j>i Fijrij

3V
(8.1)

where f = 3 is the number of translational degrees of freedom of each particle, V is the
volume of the system, Ekinetic is the kinetic energy, Fij the force between particles i and

94

j, and rij is the distance between them. The kinetic energy divided by the degrees of
freedom is

2Ekinetic
f

=
1

3

∑
i

miv
2
i . (8.2)

Note that Equation 8.1 can only be applied to pair potentials and central forces.
Description of how contributions from other interactions are calculated is beyond the
scope of this manual. Three body potentials are implemented following the procedure in
Ref. [50]. A different formula is used to calculate contribution from electrostatic interac-
tions in P3M. For electrostatic interactions, the k-space contribution is not well tested,
so use with caution! Anything outside that is currently not implemented. Four-body
dihedral potentials are not included. In case of rigid body rotation, virial contribution
from torques is not included. Constraints of any kind are not currently accounted for
in the pressure calculations. The pressure is no longer correct, e.g., when particles are
confined to a plane.

The command is implemented in parallel.

Output format (variant (1))

{ { pressure total pressure }
{ ideal ideal gas pressure }
{ { bond type pressure }

...

}
{ { nonbonded type pressure }

...

}
{ coulomb pressure }

}

specifying the pressure, the ideal gas pressure, the contributions from bonded interac-
tions, the contributions from non-bonded interactions and the electrostatic contributions.

8.1.22. Stress Tensor

Syntax

(1) analyze stress_tensor

(2) analyze stress_tensor total

(3) analyze stress_tensor (totals | ideal | coulomb |
tot_nonbonded_inter | tot_nonbonded_intra)

(4) analyze stress_tensor bonded bondt ype
(5) analyze stress_tensor nonbonded typeid1 typeid2
(6) analyze stress_tensor nonbonded_intra [typeid]
(7) analyze stress_tensor nonbonded_inter [typeid]

95

Description
Computes the stress tensor of the system. The various options are equivalent to those
described by analyze pressure in 8.1.21 on page 94. It is called a stress tensor but the
sign convention follows that of a pressure tensor.

Warning: Stress tensor works only with certain interactions and features.
Same restrictions as in the case of Pressure are applicable (see section 8.1.21).

The stress tensor is calculated by

p(kl) =

∑
imiv

(k)
i v

(l)
i

V
+

∑
j>i F

(k)
ij r

(l)
ij

V
(8.3)

where the notation is the same as for analyze pressure in 8.1.21 on page 94 and the
superscripts k and l correspond to the components in the tensors and vectors.

Note that the angular velocities of the particles are not included in the calculation of
the stress tensor.

The command is implemented in parallel.

Output format (variant (1))
{ { pressure total pressure tensor }
{ ideal ideal gas pressure tensor }
{ { bond type pressure tensor }

...

}
{ { nonbonded type pressure tensor }

...

}
{ coulomb pressure tensor }

}

specifying the pressure tensor, the ideal gas pressure tensor, the contributions from
bonded interactions, the contributions from non-bonded interactions and the electro-
static contributions.

8.1.23. Local Stress Tensor

Syntax
analyze local_stress_tensor periodic x periodic y periodic z range start x

range start y range start z range x range y range z bins x bins y
bins z

Description
Computes local stress tensors in the system. A cuboid is defined starting at the coordi-
nate (range start x ,range start y ,range start z) and going to the coordinate (range start x+range x ,

96

range start y+range y , range start z+range z). This cuboid in divided into bins x bins
in the x direction, bins y bins in the y direction and bins z bins in the z direction such
that the total number of bins is bins x*bins y*bins z . For each of these bins a stress
tensor is calculated using the Irving Kirkwood method. That is, a given interaction
contributes towards the stress tensor in a bin proportional to the fraction of the line
connecting the two particles that is within the bin.

If the P3M and MMM1D electrostatic methods are used, these interactions are not
included in the local stress tensor. The DH and RF methods, in contrast, are included.
Concerning bonded interactions only two body interactions (FENE, Harmonic) are in-
cluded (angular and dihedral are not). For all electrostatic interactions only the real
space part is included.

Care should be taken when using constraints of any kind, since these are not accounted
for in the local stress tensor calculations.

The command is implemented in parallel.

Output format (variant (1))
{ { LocalStressTensor }
{ { x bin y bin z bin } { pressure tensor } }

...

}

specifying the local pressure tensor in each bin.

8.2. Analyzing groups of particles (molecules)

The following set of functions is designed to facilitate analysis of molecules. Molecules
are expected to be a group of particles comprising a contiguous range of particle IDs.
Each molecule is a set of consecutively numbered particles and all molecules are supposed
to consist of the same number of particles. Some functions in this group require that the
particles constituting a molecule are connected into linear chains (particle n is connected
to n+ 1 and so on) while others are applicable to molecules of whatever topology.

The analyze set command defines the structure of the current system to be used
with some of the analysis functions.

Syntax

(1) analyze set chains [chain start n chains chain length]
(2) analyze set topo_part_sync

(3) analyze set

Description
Variant (1) defines a set of n chains chains of equal length chain length which start

with the particle with particle number chain start and are consecutively numbered (i.e.
the last particle in that topology has number chain start + n chains ∗ chain length − 1).

Variant (2) synchronizes topology and particle data, assigning mol id values to parti-
cles.

97

Variant (3) will return the chains currently stored.

8.2.1. Chains

All analysis functions in this section require the topology of the chains to be set correctly.
The topology can be provided upon calling. This (re-)sets the structure info permanently,
i.e. it is only required once.

End-to-end distance

Syntax

analyze (re | <re>) [chain start n chains chain length]

Description
Returns the quadratic end-to-end-distance and its root averaged over all chains. If
<re> is used, the distance is averaged over all stored configurations (see section 8.3 on
page 101).

Output format
{ re error of re re2 error of re2 }

Radius of gyration

Syntax

analyze (rg | <rg>) [chain start n chains chain length]

Description
Returns the radius of gyration averaged over all chains. It is a radius of a sphere, which
would have the same moment of inertia as the molecule, defined as

R2
G =

1

N

N∑
i=1

(~ri − ~rcm)2 , (8.4)

where ~ri are position vectors of individual particles constituting a molecule and ~rcm is
the position vector of its centre of mass. The sum runs over all N particles comprising
the molecule. For more information see any polymer science book, e.g. [41]. If <rg> is
used, the radius of gyration is averaged over all stored configurations (see section 8.3 on
page 101).

Output format
{ rg error of rg rg2 error of rg2 }

Hydrodynamic radius

Syntax

analyze (rh | <rh>) [chain start n chains chain length]

98

Description

Returns the hydrodynamic radius averaged over all chains. If <rh> is used, the hydro-
dynamic radius is averaged over all stored configurations (see section 8.3 on page 101).
The following formula is used for the computation:

1

RH
=

2

N2

N∑
i=1

N∑
j=i

1

|~ri − ~rj |
, (8.5)

The above-mentioned formula is only valid under certain assumptions. For more infor-
mation, see Chapter 4 and equation 4.102 in [17].

Output format

{ rh error of rh }

Internal distances

Syntax

analyze (internal_dist | <internal_dist>) [chain start n chains chain length]

Description

Returns the averaged internal distances within the chains (over all pairs of particles).
If <internal_dist> is used, the values are averaged over all stored configurations (see
section 8.3 on page 101).

Output format

{ idf (0) idf (1) ... idf (chain length − 1) }

The index corresponds to the number of beads between the two monomers considered
(0 = next neighbours, 1 = one monomer in between, . . .).

Internal distances II (specific monomer)

Syntax

analyze (bond_dist | <bond_dist>) [index index]
[chain start n chains chain length]

Description

In contrast to analyze internal_dist, it does not average over the whole chain, but
rather takes the chain monomer at position index (default: 0, i.e. the first monomer
on the chain) to be the reference point to which all internal distances are calculated.
If <bond_dist> is used, the values will be averaged over all stored configurations (see
section 8.3 on page 101).

Output format

{ bdf (0) bdf (1) ... bdf (chain length − 1 − index) }

99

Bond lengths

Syntax

analyze (bond_l | <bond_l>) [chain start n chains chain length]

Description

Analyzes the bond lengths of the chains in the system. Returns its average, the standard
deviation, the maximum and the minimum. If you want to look only at specific chains,
use the optional arguments, i.e. chain start = 2 ∗ MPC and n chains = 1 to only
include the third chain’s monomers. If <bond_l> is used, the value will be averaged over
all stored configurations (see section 8.3 on the next page). This function assumes linear
chain topology and does not check if the bonds really exist!

Output format

{ mean stddev max min }

Form factor

Syntax

analyze (formfactor | <formfactor>) qmin qmax qbins
[chain start n chains chain length]

Description

Computes the spherically averaged form factor of a single chain, which is defined by

S(q) =
1

chain length

chain length∑
i,j=1

sin(qrij)

qrij
(8.6)

of a single chain, averaged over all chains for qbin + 1 logarithmically spaced q-vectors
qmin, . . . , qmax where qmin > 0 and qmax > qmin. If <formfactor> is used, the form
factor will be averaged over all stored configurations (see section 8.3 on the facing page).

Output format

{
{ q S (q) }
...

}

with q ∈ {qmin, . . . , qmax}.

Chain radial distribution function

Syntax

analyze rdfchain rmin rmax rbins [chains tart nchains chainl ength]

100

Description
Returns three radial distribution functions (rdf) for the chains. The first rdf is calculated
for monomers belonging to different chains, the second rdf is for the centers of mass of
the chains and the third one is the distribution of the closest distances between the
chains (i.e. the shortest monomer-monomer distances). The distance range is given by
rmin and rmax and it is divided into rbins equidistant bins.

Output format
{
{r rdf1 (r) rdf2 (r) rdf3 (r) }
...

}

Mean square displacement of chains

Syntax

(1) analyze (<g1>| <g2>| <g3>) [chains tart nchains chainl ength]
(2) analyze g123 [-init] [chains tart nchains chainl ength]

Description
Variant (1) returns

• the mean-square displacement of the beads in the chain (<g1>)

• the mean-square displacement of the beads in the center of mass of the chain (<g2>)

• or the motion of the center of mass (<g3>)

averaged over all stored configurations (see section 8.3).
Variant (2) returns all of these observables for the current configuration, as compared

to the reference configuration. The reference configuration is set, when the option -init

is used.

Output format (variant (1))
{ gi(0 ∗ dt) gi(1 ∗ dt) ... }

Output format (variant (2))
{ g1 (t) g2 (t) g3 (t) }

8.3. Storing configurations

Some observables (i.e. non-static ones) require knowledge of the particles’ positions
at more than one or two times. Therefore, it is possible to store configurations for
later analysis. Using this mechanism, the program is also able to work quasi-offline by
successively reading in previously saved configurations and storing them to perform any
analysis desired afterwards.

101

Note that the time at which configurations were taken is not stored. The most observ-
ables that work with the set of stored configurations do expect that the configurations
are taken at equidistant timesteps.

Note also, that the stored configurations can be written to a file and read from it via
the blockfile command (see section 10.1 on page 115).

8.3.1. Storing and removing configurations

Syntax

(1) analyze append

(2) analyze remove [index]
(3) analyze replace index
(4) analyze push [size]
(5) analyze configs config

Description

Variant (1) appends the current configuration to the set of stored configurations. Variant
(2) removes the index th stored configuration, or all, if index is not specified. Variant
(3) will replace the index th configuration with the current configuration.

Variant (4) will append the current configuration to the set of stored configuration
and remove configurations from the beginning of the set until the number of stored
configurations is equal to size. If size is not specified, only the first configuration in the
set is removed.

Variants (1) to (4) return the number of currently stored configurations.

Variant (5) will append the configuration config to the set of stored configurations.
config has to define coordinates for all configurations in the format:

{x1 y1 z1 x2 y2 z2 ... }

8.3.2. Getting the stored configurations

Syntax

(1) analyze configs

(2) analyze stored

Description

Variant (1) returns all stored configurations, while variant (2) returns only the number
of stored configurations.

Output format (variant (1))

{
{x1 y1 z1 x2 y2 z2 ... }
...

}

102

8.4. uwerr: Computing statistical errors in time series

Syntax

(1) uwerr data nrep col [s tau] [plot]
(2) uwerr data nrep f [s tau [f args]] [plot]

Description
Calculates the mean value, the error and the error of the error for an arbitrary numerical
time series according to Wolff [54].

Arguments
• data is a matrix filled with the primary estimates ai,rα fromR replica withN1, N2, . . . , NR

measurements each.

data =



a1,1
1 a1,1

2 a1,1
3 · · ·

a2,1
1 a2,1

2 a2,1
3 · · ·

...
...

...
...

aN1,1
1 aN1,1

2 aN1,1
3 · · ·

a1,2
1 a1,2

2 a1,2
3 · · ·

...
...

...
...

aNR,R1 aNR,R2 aNR,R3 · · ·


•nrep is a vector whose elements specify the length of the individual replica.

nrep = (N1, N2, . . . , NR)

• f is a user defined Tcl function returning a double with first argument a vector
which has as many entries as data has columns. If f is given instead of the column,
the corresponding derived quantity is analyzed.

• f args are further arguments to f .

• s tau is the estimate S = τ/τint as explained in section (3.3) of [54]. The default
is 1.5 and it is never taken larger than minRr=1Nr/2.

• [plot] If plot is specified, you will get the plots of Γ/Γ(0) and τint vs. W . The
data and gnuplot script is written to the current directory.

Output format
mean error error of error act
error of act [Q]

where act denotes the integrated autocorrelation time, and Q denotes a quality mea-
sure, i.e. the probability to find a χ2 fit of the replica estimates.

The function returns an error message if the windowing failed or if the error in one of
the replica is to large.

103

9. Analysis in the core

Analysis in the core is a new concept introduced in ESPResSo since version 3.1. It was
motivated by the fact, that sometimes it is desirable that the analysis functions do more
than just return a value to the scripting interface. For some observables it is desirable
to be sampled every few integrations steps. In addition, it should be possible to pass
the observable values to other functions which compute history-dependent quantities,
such as correlation functions. All this should be done without the need to interrupt
the integration by passing the control to the script level and back, which produces a
significant overhead when performed too often.

Some observables in the core have their corresponding counterparts in the Tcl ob-
servables of the analyze command described in Chapter 8. However, only the core-
observables can be used on the fly with the toolbox of the correlator and on the fly
analysis of time series. Similarly, some special cases of using the correlator have their
redundant counterparts in the analysis in Tcl (Chapter 8), but the correlator provides a
general and versatile toolbox which can be used with any implemented core-observables.
The only trick to bridge the gap between Tcl based analysis and core analysis is the
tclcommand observable that allows use the return value of arbitrary Tcl functions (also
self-written) as input for the core analysis. See more below.

9.1. Observables

9.1.1. Introduction

The first step of the core analysis is to tell ESPResSo to create an observable. An
observable in the sense of the core analysis can be considered as a rule how to compute a
certain set of numbers from a given state of the system. It does not refer to the numbers
itself.

Creating an observable means just allocating the corresponding memory, assigning a
function to compute the observable value and reserving an id which will be used to refer
to the observable. In addition to the possibility to print the observable value (return
the observable value to the script interface), the id of a core-observable can be passed to
another analysis function. The observable value is computed from the current state of
the system at the moment when it is needed, i.e. when requested explicitly by the user
calling the observable print function or when requested automatically by some other
analysis function.

Not all observables are implemented in parallel. When performing a parallel compu-
tation, too frequent updates to observables which are not implemented in parallel may
produce a significant slowdown.

104

9.1.2. Creating an observable

To create a new observable, use

Syntax

observable new name [parameters+]

Description

Upon this call, ESPResSo allocates the necessary amount of memory and returns an
integer id which will be used later to refer to the observable. The parameter name and
further arguments have to correspond to one of the observables described below.

Available observables

Currently the following observables are implemented. Particle specifications (see sec-
tion 9.1.6 below) define a group of particles, from which the observable should be calcu-
lated. They are generic to all observables and are described after the list of observables.

• particle_positions particle specifications
Positions of the particles, in the format x1, y1, z1, x2, y2, z2, . . . xn, yn, zn.
The particles are ordered ascending according to their ids.

• particle_velocities particle specifications
Velocities of the particles, in the format
vx1 , v

y
1 , v

z
1 , v

x
2 , v

y
2 , v

z
2 , . . . v

x
n, v

y
n, vzn. The particles are ordered ascending

according to their ids.

• particle_forces particle specifications
Forces on the particles, in the format
fx1 , f

y
1 , f

z
1 , f

x
2 , f

y
2 , f

z
2 , . . . f

x
n , f

y
n , fzn. The particles are ordered ascending

according to their ids.

• com_position particle specifications [blocked size]
Position of the centre of mass. If blocked size is specified, the particles are subdi-
vided into blocks of size size and the centre of mass position is calculated for each
block separately.

• com_velocity particle specifications [blocked size]
Velocity of the centre of mass. If blocked size is specified, the particles are subdi-
vided into blocks of size size and the centre of mass velocity is calculated for each
block separately.

• com_force particle specifications [blocked size]
Total force on the specified particles. If blocked size is specified, the particles are
subdivided into blocks of size size and the total force is calculated for each block
separately.

105

• stress_tensor

The stress tensor. It only works with all particles. It is returned as a 9-dimensional
array:
{ σxx, σxy, σxz, σyx, σyy, σyz, σzx, σzy, σzz }

• stress_tensor_acf_obs

The observable for computation of the Stress tensor autocorrelation function. Sim-
ilarly to the stress tensor, it only works with all particles. It is returned as a 6-
dimensional array:
{ σxy, σyz, σzx, (σxx − σyy), (σxx − σzz), (σyy − σzz) }
where σij are the components of the stress tensor.

• particle_currents particle specifications
Electric currents due to individual particles. For a particle i: jxi = qiv

x
i /∆t where

∆t is the simulation time step. Required feature: ELECTROSTATICS

• currents particle specifications
Electric currents averaged over all particles: jx =

∑
i qiv

x
i /∆t where ∆t is the

simulation time step. Required feature: ELECTROSTATICS

• dipole_moment particle specifications
The dipole moment of the specified group of particles: µx =

∑
i qir

x
i Required

feature: ELECTROSTATICS

• interacts_with particle specifications1 particle specifications2 cutoff
For each particle belonging to particle specifications1 the observable is unity if
a neighbour of a type from particle specifications2 is found within the distance
defined by the cutoff . If no such neighbour is found, the observable is zero. The
observable has one dimension per each particle of particle specifications1

• density_profile particle specifications profile specifications
Compute the density profile within the specified cube. For profile specifications,
see section 9.1.7.

• lb_velocity_profile particle specifications profile specifications
Compute the Lattice-Boltzmann velocity profile within the specified cube. For
profile specifications, see section 9.1.7.

• flux_density_profile particle specifications profile specifications
Compute the flux density within the specified cube. For profile specifications, see
section 9.1.7.

• radial_density_profile Compute the density profile in cylindrical coordinates.
For profile specifications, see section 9.1.7.

• radial_flux_density_profile

Compute the flux density profile in cylindrical coordinates. For profile specifica-
tions, see section 9.1.7.

106

• lb_radial_velocity_profile

Compute the Lattice-Boltzmann velocity profile in cylindrical coordinates. For
profile specifications, see section 9.1.7.

• tclcommand dimQ command
An arbitrary Tcl function that returns a list of floating point numbers of fixed size
dimQ can be specified. Although its execution might be slow, it allows to prototype
new observables without a lot of trouble. Many existing analysis commands can
be made to cooperate with the core analysis that way.

9.1.3. Printing an observable

Syntax

observable id print [formatted]

Description
Prints the value of the observable with a given id. If the observable refers to the current
state of the system, its value is updated before printing.

9.1.4. Passing an observable to an analysis function

Currently the only analysis function which uses the core observables is the correlator
(section 9.2).

9.1.5. Deleting an observable to an analysis function

Syntax

observable id delete

Description
Deletes the observable, i.e. frees the allocated memory and makes the id free for a new
observable.

9.1.6. Particle specifications

You can specify from which particles the observable should be computed in one of the
following ways. In all cases, particle specifications refer to the current state of espresso.
Any later changes to particles (additions, deletions, changes of types) will not be auto-
matically reflected in the observable.

• all

Requests observable calculation based on all particles in the system.

• types type list
Restricts observable calculation to a given particle type(s). The type list is a tcl
list of existing particle types.

107

• id id list
Restricts observable calculation to a given list of particle id(s). The id list is a tcl
list of existing particle ids.

9.1.7. Profile specifications

Profiles are specified by giving the spacial area that is to be profiled and the number of
bins in each spacial direction. The area to be analyzed is characterized by minx/maxx
miny/maxy and minz/maxz . The defaults correspond to the box size when the observ-
able is created. The bin size in each direction defaults to 1, and can be change with
the parameter xbins/ybins/zbins. Changing one, two or three of them to a value > 1
with thus create a one-, two- or three-dimensional map of the desired quantity. The full
syntax thus reads as:

Syntax
observable new needs_profile_specs [other parameters] [minx minx]

[maxx maxx] [miny miny] [maxy maxy] [minz minz]
[maxz maxz] [xbins xbins] [ybins ybins] [zbins zbins]

Description
Radial profiles allow to do the same as usual profiles, except the coordinate system is a
cylindrical one and the binning is done in the cylindrical coordinates (defined with the
axis in z-direction). This is very helpful if the symmetry of the system is cylindrical.
The spacial are is characterized by a center (default to the center of the box) a max-
imum radial position maxr (defaults to the smaller value of the box lengths in x and
y directions) and a minimum and maximum value of z. It is possible to also resolve
different polar angles, thus using it as a full 3D mapping tool, but this will only rarely
be used. The full syntax is:

Syntax
observable new needs_radial_profile_specs [other parameters]

[center <cx> <cy> <cx>] [maxr maxr] [minz minz]
[maxz maxz] [rbins rbins] [phibins phibins] [zbins zbins]

Description

9.2. Correlations

9.2.1. Introduction

Time correlation functions are ubiquitous in statistical mechanics and molecular simu-
lations when dynamical properties of many-body systems are concerned. A prominent
example is the velocity autocorrelation function, 〈v(t) · v(t+ τ)〉 which is used in the
Green-Kubo relations. In general, time correlation functions are of the form

C(τ) = 〈A (t)⊗B (t+ τ)〉 , (9.1)

where t is time, τ is the lag time (time difference) between the measurements of (vector)
observables A and B, and ⊗ is an operator which produces the vector quantity C from

108

A and B. The ensemble average 〈·〉 is taken over all time origins t. Correlation functions
describing dynamics of large and complex molecules such as polymers span many orders
of magnitude, ranging from MD time step up to the total simulation time.

ESPResSo uses a fast correlation algorithm (see section 9.2.6) which enables efficient
computation of correlation functions spanning many orders of magnitude in the lag time.

The generic correlation interface of ESPResSo may process either observables defined
in the kernel, or data which it reads from an external file or values entered through the
scripting interface. Thus, apart from data processing on the fly, it can also be used as
an efficient correlator for stored data. In all cases it produces a matrix of n+ 2 columns.
The first two columns are the values of lag times τ and the number of samples taken
for a particular value of τ . The remaining ones are the elements of the n-dimensional
vector C(τ).

The uwerr command for computing averages and error estimates of a time series
of observables relies on estimates of autocorrelation functions and the respective auto-
correlation times. The correlator provides the same functionality as a by-product of
computing the correlation function (see section 9.2.5.

An example of the usage of observables and correlations is provided in the script
correlation.tcl in the samples directory.

9.2.2. Creating a correlation

Correlation first has to be defined by saying which observables are to be correlated,
what should be the correlation operation, sampling frequency, etc. When a correlation
is defined, its id is returned which is used further to do other operations with the cor-
relation. The correlation can be either updated automatically on the fly without direct
user intervention, or by an explicit user call for an update.

Syntax

correlation new obs1 id1 [obs2 id2] corr_operation

operation dt dt tau_max tau max [tau_lin tau lin]
[compress1 name [compress2 name]]

Description

Defines a new correlation and returns an integer id which has been assigned to it. Its
further arguments are described below.

Arguments

• obs1 and obs2

are ids of the observables A and B that are to correlated. The ids have to refer
to existing observables which have been previously defined by the observable

command. Some observables are already implemented, and others can be easily
added. This can be done with very limited ESPResSo knowledge just by following
the implementations that are already in. If obs2 is omitted, autocorrelation of
obs1 is calculated by default.

• corr_operation

109

The operation that is performed on A(t) and B(t + τ) to obtain C(τ). The
following operations are currently is available:

• scalar_product

Scalar product of A and B, i.e. C =
∑
i
AiBi

• componentwise_product

Comnponentwise product of A and B, i.e. Ci = AiBi

• square_distance_componentwise

Each component of the correlation vector is the square of the difference
between the corresponding components of the observables, i.e. Ci = (Ai −
Bi)

2. Example: when A is particle_positions, it produces the mean
square displacement (for each component separately).

• complex_conjugate_product

• fcs_acf wx wy wz

Fluorescence Correlation Spectroscopy (FCS) autocorrelation function, i.e.

Gi(τ) =
1

N

〈
exp
(
−∆x2

i (τ)

w2
x

− ∆y2
i (τ)

w2
y

− ∆z2
i (τ)

w2
z

)〉
, (9.2)

where ∆x2
i (τ) =

(
xi(0) − xi(τ)

)2
is the square discplacement of particle i

in the x direction, and wx is the beam waist of the intensity profile of the
exciting laser beam,

W (x, y, z) = I0 exp
(
−2x2

w2
x

− 2y2

w2
y

− 2z2

w2
z

)
. (9.3)

Equation 9.2 is a generalization of the formula presented by Höfling et
al. [23]. For more information, see references therein. Per each 3 dimen-
sions of the observable, one dimension of the correlation output is produced.
If fcs_acf is used with other observables than particle_positions, the
physical meaning of the result is unclear.

• dt

The time interval of sampling data points. When autoupdate is used, dt has to be
a multiple of timestep. It is also used to produce time axis in real units. Warning:
if dt is close to the timestep, autoupdate is strongly recommended. Otherwise cpu
time is wasted on passing the control between the script and kernel.

• tau_max

This is the maximum value of τ for which the correlation should be computed.
Warning: Unless you are using the multiple tau correlator, choosing tau max of
more than 100dt will result in a huge computational overhead. In a multiple tau
correlator with reasonable parameters, tau max can span the entire simulation
without too much additional cpu time.

• tau_lin

The number of data-points for which the results are linearly spaced in tau. This

110

is a parameter of the multiple tau correlator. If you want to use it, make sure
that you know how it works. By default, it is set equal to tau max which results
in the trivial linear correlator. By setting tau lin ¡ tau max the multiple tau
correlator is switched on. In many cases, tau lin=16 is a good choice but this may
strongly depend on the observables you are correlating. For more information,
we recommend to read Ref. [40] or to perform your own tests.

• compress1 and compress2

Are functions used to compress the data when going to the next level of the
multiple tau correlator. Different compression functions for different observables
can be specified if desired, otherwise the same function is used for both. Default
is discard which takes one of the observable values and discards the other one.
This is safe for all observables but produces poor statistics in the tail. For some
observables, linear compression can be used which makes an average of two
neighbouring values but produces systematic errors. Depending on the observable,
the systematic error can be anything between harmless and disastrous. For more
information, we recommend to read Ref. [40] or to perform your own tests.

9.2.3. Inquiring about already existing correlations

Syntax

(1) correlation

(2) correlation n_corr

Description

Variant (1) returns a tcl list of the defined correlations including their parameters.

Variant (2) returns the number of currently defined correlations.

9.2.4. Collecting time series data for the correlation

Syntax

(1) correlation id autoupdate { start | stop}
(2) correlation id update

(3) correlation id finalize

Description

Variant (1) is the recommended way of updating the correlations. By specifying start or
stop it starts or stops automatically updating the correlation estimates. The automatic
updates are done within the integration loop without further user intervention. The
update frequency is adjusted based based on the value of dt provided when defining the
correlation.

Variant (2) is an explicit call for an instantaneous update of the correlation estimates,
using the current system state. It is only possible to use (2) if the correlation is not
being autoupdated. However, it is possible to use it after autoupdate has been stopped.

111

When updating by an explicit call, ESPResSo does not check if the lag time between two
updates corresponds the value of dt specified when creating the correlation.

Variant (3) correlates all data from history which are left in the buffers. Once this
has been done, the history is lost and no further updates are possible. When a new
observable value is passed to a correlation, level 0 of the compression buffers of the
multiple tau correlator (see section 9.2.6 for details) is updated immediately. Higher
levels are updated only when the lower level buffers are filled and there is a need to push
some values one level up. When the updating is stopped, a number of observable values
have not reached the higher level, especially when taumax is comparable to the total
simulation time and if there are many compression levels. In such case, variant (3) is
very useful. If tau max is much shorter, it does not have a big effect.

9.2.5. Printing out the correlation and related quantities

Syntax
(1) correlation id write_to_file filename
(2) correlation id print

(3a) correlation id print [average1 | variance1 | correlation_time]
(3b) correlation id print [average_errorbars]

Description
Variant (1) writes the current status of the correlation estimate to the specified filename.
If the file exists, its contents will be overwritten.

Output format
The output looks as follows:

tau1 n_samples C1 C2 ... Cn

tau2 n_samples C1 C2 ... Cn

Where each line corresponds to a given value of tau, n_samples is the number of samples
which contributed to the correlation at this level and Ci are the individual components
of the correlation.

Variant (2) returns the current status of the correlation estimate as a Tcl variable.

Output format
The output looks as follows:

tau1 n_samples C1 C2 ... Cn

tau2 n_samples C1 C2 ... Cn

Variants (3a) and (3b) return the corresponding estimate of the statistical property
as a Tcl variable.
average1 prints the average of observable1.
variance1 prints the variance of observable1.
correlation_time prints the estimate of the correlation time.
average_errorbars prints the estimate of the error of the average based on the method
according to [54] (same as used by the uwerr command).

112

9.2.6. The correlation algorithm: multiple tau correlator

Here we briefly describe the multiple tau correlator which is implemented in ESPResSo.
For a more detailed description and discussion of its behaviour with respect to statistical
and systematic errors, please read the cited literature. This type of correlator has been
in use for years in the analysis of dynamic light scattering [42]. About a decade later
it found its way to the Fluorescence Correlation Spectroscopy (FCS) [31]. The book
of Frenkel and Smit [19] describes its application for the special case of the velocity
autocorrelation function.

Compression

level
= 2τ

= 1τ

= p−1τ

τ = p

= 2(p−1)τ

= 4(p−1)τ

= 2pτ τ = 2(p+2)

= p−2τ

= p+2τ

0

1

i=4 i=5i=3

i=4i=02 i = 4(p−1)

i=2 i=4 i=6i=0 i = 2(p−1)

i=0 i=1 i=2

i = 2(p+2)i = 2p

.

.

i = p i = p+2

i = p−2 i = p−1

Figure 9.1.: Schematic representation of buffers in the correlator.

Let us consider a set of N observable values as schematically shown in Figures 9.1,
where a value of index i was measured in time iδt. We are interested in computing the
correlation function according to Equation ?? for a range lag times τ = (i−j)δt between
the measurements i and j. To simplify the notation, we further drop δt when referring
to observables and lag times.

The trivial implementation takes all possible pairs of values corresponding to lag
times τ ∈ [τmin : τmax]. Without loss of generality, let us further consider τmin = 0. The
computational effort for such an algorithm scales as O

(
τ2

max

)
. As a rule of thumb, this

is feasible if τmax < 103. The multiple tau correlator provides a solution to compute
the correlation functions for arbitrary range of the lag times by coarse-graining the
high τ values. It applies the naive algorithm to a relatively small range of lag times
τ ∈ [0 : p− 1]. This we refer to as compression level 0. To compute the correlations for
lag times τ ∈ [p : 2(p− 1)], the original data are first coarse-grained, so that m values of
the original data are compressed to produce a single data point in the higher compression
level. Thus the lag time between the neighbouring values in the higher compression level
increases by a factor of m, while the number of stored values decreases by the same

113

factor and the number of correlation operations at this level reduces by a factor of m2.
Correlations for lag times τ ∈ [2p : 4(p− 1)] are computed at compression level 2, which
is created in an analogous manner from level 1. This can continue hierarchically up to an
arbitrary level for which enough data is available. Due to the hierarchical reduction of
the data, the algorithm scales as O

(
p2 log(τmax)

)
. Thus an additional order of magnitude

in τmax costs just a constant extra effort.
The speedup is gained at the expense of statistical accuracy. The loss of accuracy

occurs at the compression step. In principle one can use any value of m and p to tune
the algorithm performance. However, it turns out that using a high m dilutes the data
at high τ . Therefore m = 2 is hard-coded in the ESPResSo correlator and cannot be
modified by user. The value of p remains an adjustable parameter which can be modified
by user by setting tau_lin when defining a correlation. In general, one should choose
p� m to avoid loss of statistical accuracy. Choosing p = 16 seems to be safe but it may
depend on the properties of the analyzed correlation functions. A detailed analysis has
been performed in Ref. [40].

The choice of the compression function also influences the statistical accuracy and
can even lead to systematic errors. The default compression function is discard2 which
discards the second for the compressed values and pushes the first one to the higher
level. This is robust and can be applied universally to any combination of observables
and correlation operation. On the other hand, it reduces the statistical accuracy as
the compression level increases. In many cases, the average compression operation can
be applied, which averages the two neighbouring values and the average then enters
the higher level, preserving almost the full statistical accuracy of the original data. In
general, if averaging can be safely used or not, depends on the properties of the difference

1

2
(Ai ⊗Bi+p +Ai+1 ⊗Bi+p+1)− 1

2
(Ai +Ai+1)⊗ 1

2
(Bi+p +Bi+p+1) (9.4)

For example in the case of velocity autocorrelation function, the above-mentioned differ-
ence has a small value and a random sign, i.e. different contributions cancel each other.
On the other hand, in the of the case of mean square displacement the difference is al-
ways positive, resulting in a non-negligible systematic error. A more general discussion
is presented in Ref. [40].

114

10. Input / Output

10.1. blockfile: Using the structured file format

ESPResSo uses a standardized ASCII block format to write structured files for anal-
ysis or storage. Basically the file consists of blocks in curled braces, which have a
single word title and some data. The data itself may consist again of such blocks.
An example is:

{file {Demonstration of the block format}

{variable epsilon {_dval_ 1} }

{variable p3m_mesh_offset {_dval_ 5.0000000000e-01

5.0000000000e-01 5.0000000000e-01 } }

{variable node_grid {_ival_ 2 2 2 } }

{end}

Whitespace will be ignored within the format (space, tab and return).

The keyword variable should be used to indicate that a variable definition follows in
the form name data. data itself is a block with title _ival_ or _dval_ denoting integer
resp. double values, which then follow in a whitespace separated list.

Such blocks can be read in and written either from ESPResSo-scripts (see in the
following subsections), or from your own C-code using the C-Interface (see section ??).

10.1.1. Writing ESPResSo’s global variables

Syntax

(1) blockfile channel write variable {varname1 varname2 ...}
(2) blockfile channel write variable all

Description

Variant (1) writes the global variables varname1 varname2 . . . (which are known to the
setmd command (see section 6.1 on page 68) to channel . Variant (2) will write all known
global variables.

Note, that when the block is read, all variables with names listed in the Tcl variable
blockfile_variable_blacklist are ignored.

115

10.1.2. Writing Tcl variables

Syntax

(1) blockfile channel write tclvariable { varname1 varname2 ...}
(2) blockfile channel write tclvariable all

(2) blockfile channel write tclvariable reallyall

Description

These commands will write Tcl global variables to channel . Global variables are those
declared in the top scope of the Tcl script, or those that were explicitly declared
global. When reading the block, all variables with names listed in the Tcl variable
blockfile_tclvariable_blacklist are ignored.

Variant (1) writes the Tcl global variables varname1 , varname2 , . . . to channel .
Variant (2) will write all Tcl variables to the file, with the exception of the inter-
nally predefined globals from Tcl (tcl_version, argv, argv0, argc, tcl_interactive,
auto_oldpath, errorCode, auto_path, errorInfo, auto_index, env, tcl_pkgPath,
tcl_patchLevel, tcl_libPath, tcl_library and tcl_platform). Variant (3) will even
write those.

10.1.3. Writing particles, bonds and interactions

Syntax

(1) blockfile channel write particles what (range | all)
(2) blockfile channel write bonds range
(3) blockfile channel write interactions

Description

Variant (1) writes particle information in a standardized format to channel . what can
be any list of parameters that can be specified in part parti d print, except for bonds.
Note that id and pos will automatically be added if missing. range is a Tcl list of ranges
which particles to write. The keyword all denotes all known particles.

Variant (2) writes the bond information in a standardized format to channel . The
involved particles and bond types must exist and be valid.

Variant (3) writes the interactions in a standardized format to channel .

10.1.4. Writing the random number generator states

Syntax

(1) blockfile channel write random

(2) blockfile channel write bit_random

(3) blockfile channel write seed

(4) blockfile channel write bitseed

116

Description

Variants (1) and (2) write the full information on the current states of the respecitive
random number generators (see sections 11.3.1 on page 134 and 11.3.2 on page 135) on
any node to channel . Using this information, it is possible to recover the exact states of
the generators.

Variants (3) and (4) write only the seed(s) which were used to initialize the random
number generators. Note that this information is not sufficient to restore the full state of
a random number generator, because the internal state might contain more information.

10.1.5. Writing all stored configurations

Syntax

blockfile channel write configs

Description

This command writes all configurations currently stored for off-line analysis (see sec-
tion 8.3 on page 101) to channel .

10.1.6. Writing arbitrary blocks

Syntax

(1) blockfile channel write start tag
(2) blockfile channel write end

(3) blockfile channel write tag [arg]...

Description

channel has to be a Tcl channel. Variant (1) starts a block and gives it the title tag ,
variant (2) ends the block. Between two calls to the command, arbitrary data can be
written to the channel. When variant (3) is used, the function blockfile_write_tag is
called with all of the commands arguments. This function should then write the data.

Example

set file [open "data.dat" w]

blockfile $file write start "mydata"

puts $file "{This is my data!}"

blockfile $file write end

will write

{mydata {This is my data!}}

to the file data.dat.

117

10.1.7. Reading blocks

Syntax

(1) blockfile channel read start

(2) blockfile channel read toend

(3) blockfile channel read (particles | interactions | bonds |
variable | seed | random | bitrandom | configs)

(4) blockfile channel read auto

Description

Variants (1) and (2) are the low-level block-reading commands. Variant (1) reads the
start part of a block and returns the block title, while variant (2) reads the block data
and returns it.

Variants (3) and (4) read whole blocks. Variant (3) reads the beginning of one block,
checks wether it contains data of the given type and reads it. Variant (4) reads in one
block and does the following:

1. if a procedure blockfile_read_auto_tag exists, this procedure takes over (tag
is the first expression in the block). For most block types, at least all mentioned
above, i.e. particles, interactions, bonds, seed, random, bitrandom, configs,
and variable, the corresponding procedure will overwrite the current information
with the information from the block.

2. if the procedure does not exist, it returns

{ usertag rest of block }

3. if the file is at the end, it returns eof

Variant (3) checks for a block with tag block and then again executes the corresponding
blockfile_read_auto_tag , if it exists.

In the contrary that means that for a new blocktype you will normally implement two
procedures:

blockfile_write_tag channel write tag arg...
which writes the block including the header and enclosing braces and

blockfile_read_auto_tag channel read auto
which reads the block data and the closing brace. The parameters write, read , tag and
auto are regular parameters which will always have the specified value. They occur just
for technical reasons.

In a nutshell: The blockfile command is provided for saving and restoring the current
state of ESPResSo, e.g. for creating and using checkpoints. Hence you can transfer all
accessible information from files to ESPResSo and vice versa.

118

set out [open "|gzip -c - > checkpoint.block.gz" "w"]

blockfile $out write variable all

blockfile $out write interactions

blockfile $out write random

blockfile $out write bitrandom

blockfile $out write particles "id pos type q v f" all

blockfile $out write bonds all

blockfile $out write configs

close $out

This example writes all global variables, all interactions, the full current state of
the random number generator, all information (i.e. id, position, type-number, charge,
velocity, forces, bonds) of all particles, and all stored particle configurations to the file
checkpoint.block.gz which is compressed on-the-fly. If you want to be able to read in
the information using ESPResSo, note that interactions must be stored before particles
before bonding information, as for the bonds to be set all particles and all interactions
must already be known to ESPResSo.

set in [open "|gzip -cd checkpoint.block.gz" "r"]

while { [blockfile $in read auto] != "eof" } {}

close $in

This is basically all you need to restore the information in the blockfile, overwriting the
current settings in ESPResSo.

10.2. Checkpointing (deprecated)

Warning: The functions in this section are deprecated and will be removed
in some future version. They might still usable in your case, but be aware
that if you use newer features in your simulation, not all necessary parameters
might be saved and restored when writing a standard checkpoint. Try to use
blockfiles instead and think about what variables need to be stored.

The following procedures may be used to save and restore checkpoints to minimize
the hassel involved when your simulation crashes after long runs.

10.2.1. Creating a checkpoint (deprecated)

Syntax

checkpoint_set destination [numconfigs [tclvar [iaflag [varflag [ranflag]]]]]

Description

Creates a checkpoint with path/filename destination (compressed if destination ends
with ’.gz’), saving the last #ofconfigs which have been appended using analyze append
(defaults to ’all’), adds all tcl-embedded variables specified in the tcl-list tclvar (defaults

119

to ’-’), all interactions (The inter command) / ESPResSo-variables (The setmd com-
mand) / random-number-generator informations (The t random command etc.) unless
their respective flags iaflag / varflag / ranflag are set to ’-’; you may however choose to
only include certain ESPResSo-variables (The setmd command) by providing their names
as a tcl-list in place of varflag . When you’re reading this, tcl checkpoint set will be using
the invalidate system command automatically; therefore continuing an integration after
setting a checkpoint or restarting it there by reading one should make absolutely no
difference anymore, since the current state of the random number generator(s) is/are
completely (re)stored to (from) the checkpoint and the integrator is forced to re-init the
forces (incl. thermostat) no matter what. It may be a good choice to use filenames such
as ’kremer checkpoint.[eval format 05 $integration step]’ or ’kremer checkpoint.029.gz’
for destination because the command stores all the names of checkpoints set to a file
derived from destination by replacing the very last suffix plus maybe ’.gz’ with ’.chk’ (in
the above examples: ’kremer checkpoint.chk’) which is used by tcl checkpoint read to
restore all checkpoints. Although ’checkpoint set destination’ without the optional pa-
rameters will store a complete checkpoint sufficient for re-starting the simulation later on,
you may run out of memory while trying to save a huge number of timesteps appended
(analyze append). Hence one should rather only save those configurations newly added
since the last checkpoint, i.e. if a checkpoint is created every 100,000 steps while a con-
figuration is appended every 500 steps you may want to use ’checkpoint set destination
200’ which saves the current configuration, all interactions, all bonds, the precise state of
the random number generator(s), and the last 200 entries appended to configs since the
last checkpoint was created. Since tcl checkpoint read reads in successively the check-
points given in the ’.chk’-file, the configs-array will nevertheless be completely restored
to its original state although each checkpoint-file contains only a fraction of the whole
array.

10.2.2. Reading a checkpoint (deprecated)

Syntax

checkpoint_read source

Description

Restores all the checkpoints whose filenames are listed in source in the order given
therein, consequently putting the simulation into the state it was in when checkpoint_set

was called. If parts of the configs array are given in the files listed in source, it is assumed
that they represent a fraction of the whole array.

10.2.3. Writing a checkpoint 2 (deprecated)

Syntax

(1) polyBlockWrite path (param list | all) part list

120

Description

Variant (1) writes out the current ESPResSo-configuration as a blockfile, including pa-
rameters, interactions, particles, and bonds. path should contain the filename including
the full path to it. paraml ist gives a tcl-list of the ESPResSo-parameters to be saved; if
an empty list {} is supplied, no parameters are written. If all, all global variables are
written. This defaults to all. partl ist gives a list of the particle-properties (out of pos,
type, q, v, f) to be saved to disk; if an empty list {} is provided, no particles, no bonds,
and no interactions are written. Defaults to all particle properties. If the suffix of path
is .gz, the output will be compressed.

10.2.4. Writing a checkpoint 3 (deprecated)

Syntax

(2) polyBlockWriteAll destination [(tclvar | all) [(whatever |-)
[(state | seed |-)]]]

Description

Variant (2) saves all current interactions, particles, bonds, and global variables to destination,
but in addition it also saves the tcl-variables specified by tclvar (if all, then all the vari-
ables in the active script are stored), it saves all the stored configurations if whatever
is whatever, but -. Furthermore, it saves the state (state) or the seed (seed) of the
random number generator.

10.3. Writing VTF files

The formats VTF (VTF Trajectory Format), VSF (VTF Structure Format) and VCF
(VTF Coordinate Format) are formats for the visualization software VMD[24]1. They
are intended to be human-readable and easy to produce automatically and modify.

The format distinguishes between structure blocks that contain the topological infor-
mation of the system (i.e. the system size, particle names, types, radii and bonding
information, amongst others), while coordinate blocks (a.k.a. as timestep blocks) contain
the coordinates for the particles at a single timestep. For a visualization with VMD, one
structure block and at least one coordinate block is required.

Files in the VSF format contain a single structure block, files in the VCF format
contain at least one coordinate block, while files in the VTF format contain a single
structure block first and an arbitrary number of coordinate blocks afterwards, thus
allowing to store all information for a whole simulation in a single file. For more details
on the format, refer to the homepage of the format2.

Creating files in these formats from within ESPResSo is supported by the commands
writevsf and writevcf, that write a structure respectively a coordinate block to the
given Tcl channel. To create a VTF file, first use writevsf at the beginning of the

1http://www.ks.uiuc.edu/Research/vmd/
2https://github.com/olenz/vtfplugin/wiki/VTF-format

121

http://www.ks.uiuc.edu/Research/vmd/
https://github.com/olenz/vtfplugin/wiki/VTF-format

simulation, and then writevcf after each timestep to generate a trajectory of the whole
simulation.

The structure definitions in the VTF/VSF formats are incremental, i.e. a user can
easily add further structure lines to the VTF/VSF file after a structure block has been
written to specify further particle properties for visualization.

Note that the ids of the particles in ESPResSo and VMD may differ. VMD requires
the particle ids to be enumerated continuously without any holes, while this is not
required in ESPResSo. When using writevsf and writevcf, the ESPResSo particle ids
are automatically translated into VMD particle ids. The function vtfpid allows the
user to get the VMD particle id for a given ESPResSo particle id.

Also note, that these formats can not be used to write trajectories where the number
of particles or their types varies between the timesteps. This is a restriction of VMD
itself, not of the format.

10.3.1. writevsf: Writing the topology

Syntax

writevsf channelId [(short | verbose)] [radius (radii | auto)]
[typedesc typedesc] [ignore_charges]

Description

Writes a structure block describing the system’s structure to the channel given by
channelId . channelId must be an identifier for an open channel such as the return
value of an invocation of open. The output of this command can be used for a stan-
dalone VSF file, or at the beginning of a VTF file that contains a trajectory of a whole
simulation.

Arguments

• [(short | verbose)] Specify, whether the output is in a human-readable, but
somewhat longer format (verbose), or in a more compact form (short). The
default is verbose.

• [radius (radii | auto)] Specify the VDW radii of the atoms. radii is either
auto, or a Tcl-list describing the radii of the different particle types. When the
keyword auto is used and a Lennard-Jones interaction between two particles of
the given type is defined, the radius is set to be σLJ

2 plus the LJ shift. Otherwise,
the radius 0.5 is substituted. The default is auto.

Example

writevsf $file radius {0 2.0 1 auto 2 1.0}

• [typedesc typedesc] typedesc is a Tcl-list giving additional VTF atom-keywords
to specify additional VMD characteristics of the atoms of the given type. If no
description is given for a certain particle type, it defaults to name name type

type , where name is an atom name and type is the type id.

122

Example

writevsf $file typedesc {0 "name colloid" 1 "name pe"}

• [ignore_charges] this is a temporary workaround for a bug in the VTF reader of
VMD, which cannot handle multiple atom sections for the same atom. However,
charges are written out per-atom, so that VMD forgets about atom types and
radii. If you don’t need the charges, you can switch them off by this flat, making
the other settings work again.

10.3.2. writevcf: Writing the coordinates

Syntax

writevcf channelId [(short | verbose)] [(folded | absolute)]
[pids (pids | all)] [userdata userdata]

Description

Writes a coordinate (or timestep) block that contains all coordinates of the system’s
particles to the channel given by channelId . channelId must be an identifier for an open
channel such as the return value of an invocation of open.

Arguments

• [(short | verbose)] Specify, whether the output is in a human-readable, but
somewhat longer format (verbose), or in a more compact form (short). The
default is verbose.

• [(folded | absolute)] Specify whether the particle positions are written in
absolute coordinates (absolute) or folded into the central image of a periodic
system (folded). The default is absolute.

• [pids (pids | all)] Specify the coordinates of which particles should be writ-
ten. If all is used, all coordinates will be written (in the ordered timestep
format). Otherwise, pids has to be a Tcl-list specifying the pids of the particles.
The default is all.

Example

pids {0 23 42}

• [userdata userdata] Specify arbitrary user data for the particles. userdata has
to be a Tcl list containing the user data for every particle. The user data is
appended to the coordinate line and can be read into VMD via the VMD plugin
VTFTools. The default is to provide no userdata.

Example

userdata {"red" "blue" "green"}

123

10.3.3. vtfpid: Translating ESPResSo particles ids to VMD particle ids

Syntax

vtfpid pid

Description
If pid is the id of a particle as used in ESPResSo, this command returns the atom id
used in the VTF, VSF or VCF formats.

10.4. Writing PDB/PSF files

The PDB (Brookhaven Protein DataBase) format is a widely used format for describing
atomistic configurations. PSF is a format that is used to describe the topology of a PDB
file.

When visualizing your system with VMD, it is recommended to use the VTF format
instead (see section 10.3), as it was specifically designed for visualizations with VMD. In
contrast to the PDB/PSF formats, in VTF files it is possible to specify the VDW radii
of the particles, to have a varying simulation box size, etc.

10.4.1. writepsf: Writing the topology

Syntax

writepsf file [-molecule] NP MPC NC I NpS NnS

Description
Writes the current topology to the file file (here, file is not a channel, since additional
information cannot be written anyway). NP , MPC and so on are parameters describing
a system consisting of equally long charged polymers, counterions and salt. This infor-
mation is used to set the residue name and can be used to color the atoms in VMD.
If you specify -molecule, the residue name is taken from the molecule identity of the
particle. Of course different kinds of topologies can also be handled by modified versions
of writepsf.

10.4.2. writepdb: Writing the coordinates

Syntax

(1) writepdb file
(2) writepdbfoldchains file chain start n chains chain length box l
(3) writepdbfoldtopo file shift

Description
Variant (1) writes the corresponding particle data.

Variant (2) writes folded particle data where the folding is performed on chain centers
of mass rather than single particles. In order to fold in this way the chain topology

124

and box length must be specified. Note that this method is outdated. Use variant (3)
instead.

Variant (3) writes folded particle data where the folding is performed on chain centers
of mass rather than single particles. This method uses the internal box length and
topology information from espresso. If you wish to shift particles prior to folding then
supply the optional shift information. shift should be a three member tcl list consisting
of x, y, and z shifts respectively and each number should be a floating point (ie with
decimal point).

10.5. Online-visualisation with VMD

IMD (Interactive Molecular Dynamics) is the protocol that VMD uses to communicate
with a simulation. Tcl md implements this protocol to allow online visual analysis of
running simulations.

In IMD, the simulation acts as a data server. That means that a simulation can
provide the possibility of connecting VMD, but VMD need not be connected all the
time. You can watch the simulation just from time to time.

In the following the setup and usage of IMD is described.

10.5.1. imd: Using IMD in the script

Syntax

(1) imd connect [port]
(2) imd positions [(-unfolded |-fold_chains)]
(3) imd listen seconds
(4) imd disconnect

Description

In your simulation, the IMD connection is setup up using variant (1), where port is an
arbitrary port number (which usually has to be between 1024 and 65000). By default,
ESPResSo will try to open port 10000, but the port may be in use already by another
ESPResSo simulation. In that case it is a good idea to just try another port.

While the simulation is running, variant (2) can be used to transfer the current co-
ordinates to VMD, if it is connected. If not, nothing happens and the command just
consumes a small amount of CPU time. Note, that before you can transfer coordinates
to VMD, VMD needs to be aware of the structure of the system. For that, you first
need to load a corresponding structure file (PSF or VSF) into VMD. Also note, that the
command prepare_vmd_connection (see section 10.5.3 on the next page) can be used
to automatically set up the VMD connection and transfer the structure file.

By specifying -unfolded, the unfolded coordinates of the particles will transferred,
while -fold_chains will fold chains according to their centers of mass and retains bond-
ing connectivity. Note that this requires the chain structure to be specified first using
the analyze command.

125

Variant (3) can be used to let the simulation wait for seconds seconds or until IMD has
connected, before the script is continued. This is normally only useful in demo scripts,
if you want to see all frames of the simulation.

Variant (4) will terminate the IMD session. This is normally not only nice but also
the operating system will not free the port for some time, so that without disconnecting
for some 10 seconds you will not be able to reuse the port.

10.5.2. Using IMD in VMD

The PDB/PSF files created by ESPResSo via the command writepsf and writepdb can
be loaded into VMD. This should bring up an initial configuration.

Then you can use the VMD console to execute the command

imd connect host port

where host is the host running the simulation and port is the port it listens to. Note that
VMD crashes, if you do that without loading a structure file before. For more information
on how to use VMD to extract more information or hide parts of configuration, see the
VMD Quick Help.

10.5.3. Automatically setting up a VMD connection

Syntax

prepare_vmd_connection [filename [wait [start]] [constraints]]

Description

To reduce the effort involved in setting up the IMD connection, starting VMD and load-
ing the structure file, ESPResSo provides the command prepare_vmd_connection. It
writes out the required vsf structure description file to filename.vsf (default for filename
is vmd), doing some nice stuff such as coloring the molecules, bonds and counterions
appropriately, rotating your viewpoint, and connecting your system to the visualization
server.

If constraints is not 0, then the command will create graphics primitives in VMD that
represent some of the spatial constraints (sphere, rhomboid and cylinder at present).

When wait is provided, ESPResSo will wait for wait seconds for VMD to connect,
and only continue after this time has passed or VMD has connected. If start is 1 (the
default), it will automatically try to start VMD and connect to the ESPResSo simulation,
otherwise it writes a corresponding script to the file filename.vmd_start.script, that
can be executed via VMD, either from the command line

vmd -e vmd_start.script

or from the Tcl console of VMD with the command

play "vmd_start.script"

126

10.6. Errorhandling

Errors in the parameters are detected as early as possible, and hopefully self-
explanatory error messages returned without any changes to the data in the internal
data of ESPResSo. This include errors such as setting nonexistent properties of par-
ticles or simply misspelled commands. These errors are returned as standard Tcl
errors and can be caught on the Tcl level via

catch {script} err

When run noninteractively, Tcl will return a nice stack backtrace which allows to quickly
find the line causing the error.

However, some errors can only be detected after changing the internal structures, so
that ESPResSo is left in a state such that integration is not possible without massive
fixes by the users. Especially errors occuring on nodes other than the primary node fall
under this condition, for example a broken bond or illegal parameter combinations.

For error conditions such as the examples given above, a Tcl error message of the form

tcl error background 0 error a error b 1 error c

is returned. Following possibly a normal Tcl error message, after the background key-
word all severe errors are listed node by node, preceeded by the node number. A special
error is <consent>, which means that one of the slave nodes found exactly the same er-
rors as the master node. This happens mainly during the initialization of the integrate,
e.g. if the time step is not set. In this case the error message will be

background_errors 0 {time_step not set} 1 <consent>

In each case, the current action was not fulfilled, and possibly other parts of the internal
data also had to be changed to allow ESPResSo to continue, so you should really know
what you do if you try and catch these errors.

127

11. Auxilliary commands

11.1. Center of mass motion

11.1.1. system_com

Syntax

system_com

Description
Returns the center of mass of the whole system.

11.1.2. system_com_vel

Syntax

system_com_vel

Description
Returns the velocity of the center of mass of the whole system.

11.1.3. galileiTransformParticles

Syntax

galileiTransformParticles

Description
Substracts the velocity of the center of mass of the whole system from every particle’s
velocity, thereby performing a galilei transform into the reference frame of the center of
mass of the system.

This is useful for example in combination with the DPD thermostat, since there, a
drift in the velocity of the whole system leads to an offset in the reported temperature.

11.2. Finding particles and bonds

11.2.1. countBonds

Syntax

countBonds particlel ist

128

Description

Returns a Tcl-list of the complete topology described by particle list , which must have
the same format as the output of the command part (see section 4.1 on page 26).

The output list contains only the particle id and the corresponding bonding in-
formation, thus it looks like e.g.

{106 {0 107}} {107 {0 106} {0 108}} {108 {0 107} {0 109}} ...

{210 {0 209} {0 211}} {211 {0 210}} 212 213 ...

for a single chain of 106 monomers between particle 106 and 211, with additional loose
particles 212, 213, ... (e.g. counter-ions). Note, that the part command stores any
bonds only with the particle of lower particle number, which is why [part 109] would
only return ... bonds 0 110, therefore not revealing the bond between particle 109
and (the preceding) particle 108, while countBonds would return all bonds particle 109
participates in.

11.2.2. findPropPos

Syntax

findPropPos particlepropertyl ist property

Description

Returns the index of property within particlepropertyl ist , which is expected to have the
same format as [part particlei d]. If property is not found, -1 is returned.

This function is useful to access certain properties of particles without hard-wiring
their index-position, which might change in future releases of part.

Example

[lindex [part $i] [findPropPos [part $i] type]]

This returns the particle type id of particle i without fixing where exactly that informa-
tion has to be in the output of [part $i].

11.2.3. findBondPos

Syntax

findBondPos particlepropertyl ist

Description

Returns the index of the bonds within particlepropertyl ist , which is expected to have the
same format as [part particle number]; hence its output is the same as [findPropPos
particlepropertyl ist bonds]. If the particle does not have any bonds, -1 is returned.

129

11.2.4. timeStamp

Syntax

timeStamp path prefix postfix suffix

Description
Modifies the filename contained within path to be preceded by a prefix and having
postfix before the suffix ; e.g.

timeStamp ./scripts/config.gz DH863 001 gz

returns ./scripts/DH863_config001.gz. If postfix is −1, the current date is used in the
format %y%m%d. This would results in ./scripts/DH863_config021022.gz on October
22nd, 2002.

11.3. Additional Tcl math-functions

The following procedures are found in scripts/ABHmath.tcl.

• CONSTANTS

– PI

returns π with 16 digits precision.

– KBOLTZ

Returns Boltzmann constant in Joule/Kelvin

– ECHARGE

Returns elementary charge in Coulomb

– NAVOGADRO

Returns Avogadro number

– SPEEDOFLIGHT

Returns speed of light in meter/second

– EPSILON0

Returns dielectric constant of vaccum in Coulomb2̂/(Joule meter)

– ATOMICMASS

Returns the atomic mass unit u in kilogramms

• MATHEMATICAL FUNCTIONS

– sqr <arg>

returns the square of arg .

– min <arg1> <arg2>

130

returns the minimum of arg1 and arg2 .

– max <arg1> <arg2>

returns the maximum of arg1 and arg2 .

– sign <arg>

returns the signum-function of arg , namely +1 for arg > 0, -1 for < 0, and
=0 otherwise.

• RANDOM FUNCTIONS

– gauss_random

returns random numbers which have a Gaussian distribution

– dist_random <dist> [max]

returns random numbers in the interval [0, 1] which have a distribution ac-
cording to the distribution function p(x) dist which has to be given as a tcl
list containing equally spaced values of p(x). If p(x) contains values larger
than 1 (default value of max) the maximum or any number larger than that
has to be given max . This routine basically takes the function p(x) and places
it into a rectangular area ([0,1],[0,max]). Then it uses to random numbers
to specify a point in this area and checks wether it resides in the area under
p(x). Attention: Since this is written in tcl it is probably not the fastest way
to do this!

– vec_random [len]

returns a random vector of length len (uniform distribution on a sphere) This
is done by chosing 3 uniformly distributed random numbers [−1, 1] If the
length of the resulting vector is <= 1.0 the vector is taken and normalized to
the desired length, otherwise the procedure is repeated until succes. On aver-
age the procedure needs 5.739 random numbers per vector. (This is probably
not the most efficient way, but it works!) Ask your favorit mathematician for
a proof!

– phivec_random <v> <phi> [len]

return a random vector at angle phi with v and length len

• PARTICLE OPERATIONS

Operations involving particle positions. The parameters pi can either denote the
particle identity (then the particle position is extracted with the The part command
command) or the particle position directly When the optional box parameter for
minimum image conventions is omited the functions use the the setmd box_l

command.

– bond_vec <p1> <p2>

Calculate bond vector pointing from particles p2 to p1 return = (p1 .pos -
p2 .pos)

131

– bond_vec_min <p1> <p2> [box]

Calculate bond vector pointing from particles p2 to p1 return = MinimumImage(p1 .pos
- p2 .pos)

– bond_length <p1> <p2>

Calculate bond length between particles p1 and p2

– bond_length_min <p1> <p2> [box]

Calculate minimum image bond length between particles p1 and p2

– bond_angle <p1> <p2> <p3> [type]

Calculate bond angle between particles p1 , p2 and p3 . If type is ”r” the
return value is in radiant. If it is ”d” the return value is in degree. The
default for type is ”r”.

– bond_dihedral <p1> <p2> <p3> <p4> [type]

Calculate bond dihedral between particles p1 , p2 , p3 and p4 If type is ”r”
the return value is in radiant. If it is ”d” the return value is in degree The
default for type is ”r”.

– part_at_dist <p> <dist>

return position of a new particle at distance dist from p with random orien-
tation

– part_at_angle <p1> <p2> <phi> [len]

return position of a new particle at distance len (default=1.0) from p2 which
builds a bond angle phi for (p1 , p2 , p-new)

– part_at_dihedral <p1> <p2> <p3> <theta> [phi] [len]

return position of a new particle at distance len (default=1.0) from p3 which
builds a bond angle phi (default=random) for (p2 , p3 , p-new) and a dihedral
angle theta for (p1 , p2 , p3 , p-new)

• INTERACTION RELATED

Help functions related to interactions implemented in ESPResSo.

– calc_lj_shift <lj_sigma> <lj_cutoff>

returns the value needed to shift the Lennard Jones potential to zero at the
cutoff.

• VECTOR OPERATIONS

A vector v is a tcl list of numbers with an arbitrary length Some functions are
provided only for three dimensional vectors. corresponding functions contain 3d
at the end of the name.

– veclen <v>

132

return the length of a vector

– veclensqr <v>

return the length of a vector squared

– vecadd <a>

add vector a to vector b: return = (a+b)

– vecsub <a>

subtract vector b from vector a: return = (a-b)

– vecscale <s> <v>

scale vector v with factor s: return = (s*v)

– vecdot_product <a>

calculate dot product of vectors a and b: return = (a.b)

– veccross_product3d <a>

calculate the cross product of vectors a and b: return = (a x b)

– vecnorm <v> [len]

normalize a vector to length len (default 1.0)

– unitvec <p1> <p2>

return unit vector pointing from position p1 to position p2

– orthovec3d <v> [len]

return orthogonal vector to v with length len (default 1.0) This vector does
not have a random orientation in the plane perpendicular to v

– create_dihedral_vec <v1> <v2> <theta> [phi] [len]

create last vector of a dihedral (v1 , v2 , res) with dihedral angle theta and
bond angle (v2 , res) phi and length len (default 1.0). If phi is ommited or
set to rnd then phi is assigned a random value between 0 and 2 Pi.

• TCL LIST OPERATIONS

– average <list>

Returns the avarage of the provided list

– list_add_value <list> <val>

Add val to each element of list

– flatten <list>

flattens a nested list

– list_contains <list> <val>

Checks wether list contains val . returns the number of occurences of val in
list .

133

• REGRESSION

– LinRegression <l>

where l is a listof pairs of points { {$x1 $y1} {$x2 $y2} ...} . LinRegression
returns the least-square linear fit ax+ b and the standard errors σa and σb.

– LinRegressionWithSigma <l>

where l is a list of lists of points in the form {{$x1 $y1 $s1} {$x2 $y2 $s2} ...}

where s is the standard deviation of y. LinRegressionWithSigma returns the
least-square linear fit ax+b, the standard errors σa and σb, covariance cov(a, b)
and χ.

11.3.1. t_random

• Without further arguments,

t_random

returns a random double between 0 and 1 using the ’ran1’ random number gener-
ator from Numerical Recipes.

• t_random int <n>

returns a random integer between 0 and n-1.

• t_random seed

returns a tcl-list with the seeds of the random number generators on each of the
’n nodes’ nodes, while

t_random seed <seed(0)> ... <seed(n_nodes-1)>

sets those seeds to the new values respectively, re-initialising the random num-
ber generators on each node. Note that this is automatically done on invoking
Espresso, however due to that your simulation will always start with the same ran-
dom sequence on any node unless you use this tcl-command to reset the sequences’
seeds.

• Since internally the random number generators’ random sequences are not based
on mere seeds but rather on whole random number tables, to recover the exact
state of the random number generators at a given time during the simulation run
(e. g. for saving a checkpoint) requires knowledge of all these values. They can be
accessed by

t_random stat

which returns a tcl-list with all status informations for any node (e. g. 8 nodes =>
approx. 350 parameters). To overwrite those internally in Espresso (e. g. upon
restoring a checkpoint) submit the whole list back using

t_random stat <status-list>

134

with status − list being the tcl-list mentioned above without any braces. Be careful!
A complete recovery of the current state of the simulation is only possible if you
make sure to include a call to The invalidate system command after you saved
the checkpoint (tcl checkpoint set will do this automatically for you), because the
integration algorithm re-uses the old forces calculated in the previous time-step;
if something has changed in the system (or if it has just been read from a file)
the forces are re-derived (including application of the thermostat and its random
numbers) leading to slightly different results compared to the uninterrupted run
(see The invalidate system command for details)!

The C implementation is t random

11.3.2. The bit_random command

• Without further arguments,

bit_random

returns a random double between 0 and 1 using the R250 generator XOR-ing a
table of 250 linear independent integers.

• bit_random seed

returns a tcl-list with the seeds of the random number generators on each of the
’n nodes’ nodes, while

bit_random seed <seed(0)> ... <seed(n_nodes-1)>

sets those seeds to the new values respectively, re-initialising the random num-
ber generators on each node. Note that this is automatically done on invoking
Espresso, however due to that your simulation will always start with the same ran-
dom sequence on any node unless you use this tcl-command to reset the sequences’
seeds.

• Since internally the random number generators’ random sequences are not based
on mere seeds but an array of 250 linear independent integers whose bits are used
as matrix elements which are XOR-ed, to recover the exact state of the random
number generators at a given time during the simulation run (e. g. for saving a
checkpoint) requires knowledge of all these values. They can be accessed by

bit_random stat

which returns a tcl-list with all status informations for any node (e. g. 8 nodes
=> approx. 2016 parameters). To overwrite those internally in Espresso (e. g.
upon restoring a checkpoint) submit the whole list back using

bit_random stat <status-list>

with ¡status-list¿ being the tcl-list mentioned above without any braces. Be careful!
A complete recovery of the current state of the simulation is only possible if you
make sure to include a call to The invalidate system command after you saved

135

the checkpoint (tcl checkpoint set will do this automatically for you), because the
integration algorithm re-uses the old forces calculated in the previous time-step;
if something has changed in the system (or if it has just been read from a file)
the forces are re-derived (including application of the thermostat and its random
numbers) leading to slightly different results compared to the uninterrupted run
(see The invalidate system command for details)!

• Note further that the bit-wise display of integers, as it is used by this random
number generator, is platform dependent. As long as you stay on the same archi-
tecture this doesn’t matter at all; however, it wouldn’t be wise to use a checkpoint
including the state of the R250 to restart the simulation on a different platform
- most likely, the integers will have a different bit-muster leading to a completely
different random matrix. So, if you’re using this random number generator, always
remain on the same platform!

11.4. Checking for features of ESPResSo

In an ESPResSo-Tcl-script, you can get information whether or not one or some of the
features are compiled into the current program with help of the following Tcl-commands:

• code_info

provides information on the version, compilation status and the debug status of the
used code. It is highly recommended to store this information with your simulation
data in order to maintain the reproducibility of your results. Exemplaric output:

ESPRESSO: v1.5.Beta (Neelix), Last Change: 23.01.2004

{ Compilation status { PARTIAL_PERIODIC } { ELECTROSTATICS }

{ EXTERNAL_FORCES } { CONSTRAINTS } { TABULATED }

{ LENNARD_JONES } { BOND_ANGLE_COSINE } }

{ Debug status { MPI_CORE FORCE_CORE } }

• has_feature <feature> ...

tests, if feature is compiled into the ESPResSo kernel. A list of possible features
and their names can be found here.

• require_feature <feature> ...

tests, if feature is feature is compiled into the ESPResSo kernel, will exit the script
if it isn’t and return the error code 42. A list of possible features and their names
can be found here.

136

12. Lattice-Boltzmann

For an implicit treatment of a solvent, ESPResSo allows to couple the molecular dynam-
ics simulation to a Lattice-Boltzmann fluid. The Lattice- Boltzmann-Method (LBM) is
a fast, lattice based method that, in its “pure” form, allows to calculate fluid flow in
different boundary conditions of arbitrarily complex geometries. Coupled to molecular
dynamics, it allows for the computationally efficient inclusion of hydrodynamic interac-
tions into the simulation. The implementation of boundary conditions for the LBM is
a difficult task, a lot of research is still being conducted on this topic. The focus of the
ESPResSo implementation of the LBM is, of course, the coupling to MD and therefore
available geometries and boundary conditions are somewhat limited in comparison to
“pure” codes.

Here we restrict the documentation to the interface. For a more detailed description
of the method, please refer to the literature.

12.1. Setting up a LB fluid

Syntax

lbfluid [gpu] 2 [agrid agrid] 1 or 2 [dens density] 1 or 2 [visc viscosity] 1 or 2

[tau lb timestep] 1 or 2 [bulk_visc bulk viscosity] 1 or 2

[ext_force fx fy fz] 1 or 2 [friction gamma] 1 or 2

[gamma_odd gamma odd] 1 or 2 [gamma_even gamma even] 1 or 2

Required features: 1 LB 2 LB_GPU

Description

The lbfluid command initializes the fluid with a given set of parameters. It is also
possible to change parameters on the fly, but this will only rarely be done in practice.
Before being able to use the LBM, it is necessary to set up a box of a desired size. The
parameter agrid is used to set the lattice constant of the fluid, so the size of the box in
every direction must be a multiple of agrid .

In ESPResSo the LB scheme and the MD scheme are not synchronized: In one LB time
step typically several MD steps are performed. This allows to speed up the simulations
and is adjusted with the parameter tau, the LB timestep. The parameters dens and
visc set up the density and (kinematic) viscosity of the LB fluid in (usual) MD units.
Internally the LB implementation works with a different set of units: all lengths are
expressed in agrid , all times in tau and so on. Therefore changing agrid and tau, might
change the behaviour of the LB fluid, e.g. at boundaries, due to characteristics of the
LBM itself. It should also be noted that the LB nodes are located at 0.5, 1.5, 2.5, etc

137

(in terms of agrid). This has important implications for the location of hydrodynamic
boundaries which are generally considered to be halfway between two nodes to first order.
Currently it is not possible to precisely give a parameter set where reliable results are
expected, but we are currently performing a study on that. Therefore the LBM should
not be used as a black box, but only after a careful check of all parameters that were
applied.

The parameter ext_force allows to apply an external body force density that is
homogeneous over the fluid. It is again to be given in MD units. The parameter
bulk_viscosity allows to tune the bulk viscosity of the fluid and is given in MD units.
In the limit of low Mach (often also low Reynolds) number the results should be inde-
pendent of the bulk viscosity up to a scaling factor. It is however known that the values
of the viscosity does affect the quality of the implemented link-bounce-back method.
gamma_odd and gamma_even are the relaxation parameters for the kinetic modes. Due
to their somewhat obscure nature they are to be given directly in LB units.

Before running a simulation at least the following parameters must be set up: agrid,
dens, visc, tau, friction. For the other parameters, the following are taken: bulk viscosity=0,
gamma odd=0, gamma even=0, fx = fy = fz = 0.

Syntax

lbfluid print_interpolated_velocity x y z

Description

This variant returns the velocity at point in countinous space. This can make it easier
to calculate flow profiles independent of the lattice constant.

Syntax

lbfluid print [vtk] property filename

Description

The print parameter is a feature to simplify visualization. It allows for the export of
the whole fluid field data into a file with name filename at once. Currently supported
values for the parameter property are boundary and velocity. The additional option vtk

enables export in the vtk format which is readable by visualization software such as
paraview or mayavi. Otherwise gnuplot readable data will be exported.

Syntax

lbfluid save_ascii_checkpoint filename lbfluid save_binary_checkpoint

filename lbfluid load_ascii_checkpoint filename lbfluid load_-

binary_checkpoint filename

Description

The first two save commands save all of the LB fluid nodes’ populations to filename
in ascii or binary format respectively. The two load commands load the populations
from filename. This is useful for restarting a simulation either on the same machine or
a different machine. Some care should be taken when using the binary format as the
format of doubles can depend on both the computer being used as well as the compiler.

138

This is currently only implemented for the cpu version of LB.

12.2. LB as a thermostat

Syntax

thermostat lb 1 or 2 T

Required features: 1 LB 2 LB_GPU

Description

The LBM implementation in ESPResSo uses Duenweg’s point coupling method to couple
MD particles the LB fluid. This coupling consists in a frictional force and a random force:

~F = −γ (~v − ~u) + ~FR.

The frictional force tends to decrease the relative velocity between the fluid and the
particle whereas the random forces are chosen so large that the average kinetic energy
per particle corresponds to the given temperature, according to a fluctuation dissipation
theorem. No other thermostatting mechanism is necessary then. Please any of these off
before starting the LB thermostatting mechanism.

The LBM implementation provides a fully thermalized LB fluid, i.e. all nonconserved
modes, including the pressure tensor, fluctuate correctly according to the given temper-
ature and the relaxation parameters. All fluctuations can be switched off by setting the
temperature to 0.

12.3. Reading and setting single lattice nodes

Syntax

lbnode x y z (print | set) args

Required features: LB

Description

The lbnode command allows to inspect (print) and modify (set) single LB nodes.
Note that the indexing in every direction starts with 0. For both commands you have
to specify what quantity should be printed or modified. Print allows the following
arguments:

139

rho the density (scalar).
u the fluid velocity (three floats: ux, uy, uz)
pi the fluid velocity (six floats: Πxx, Πxy, Πyy,

Πxz, Πyz, Πzz)
pi_neq the nonequilbrium part of the pressure ten-

sor, components as above.
pop the 19 population (check the order from the

source code please).
boundary the flag indicating whether the node is a

fluid node (boundary = 0) or a boundary
node (boundary 6= 0). Does not support
set. Refer to the lbboundary command for
this functionality.

Example: The line

puts [lbnode 0 0 0 print u]

prints the fluid velocity in node 0 0 0 to the screen. The command set allows to
change the density or fluid velocity in a single node. Setting the other quantities
can easily be implemented. Example:

puts [lbnode 0 0 0 set u 0.01 0. 0.]

12.4. Setting up boundary conditions

Syntax

lbboundary shape shape args [velocity vx vy vz]

Required features: LB_BOUNDARIES

Description

If nothing else is specified periodic boundary conditions are assumed for the LB fluid.
The lbboundary command allows to set up other (internal or external) boundaries.

The lbboundary command syntax is very close to the constraint syntax, as
usually one wants the hydrodynamic boundary conditions to be shaped similarily
to the MD boundaries. Currently the shapes mentioned above are available and
their syntax exactly follows the syntax of the constraint command. For example

lbboundary wall dist 1.5 normal 1. 0. 0.

creates a planar boundary condition at distance 1.5 from the origin of the coordinate
system where the half space x > 1.5 is treated as normal LB fluid, and the other half
space is filled with boundary nodes.

Intersecting boundaries are in principle possible but must be treated with care. In
the current, only partly satisfactory, all nodes that are within at least one boundary
are treated as boundary nodes. Improving this is nontrivial, and suggestions are very

140

welcome.

Currently, only the so called “link-bounce-back” algorithm for wall nodes is available.
This creates a boundary that is located approximately midway between the lattice nodes,
so in the above example this corresponds indeed to a boundary at x = 1.5. Note that
the location of the boundary is unfortunately not independent of the viscosity. This can
e.g. be seen when using the sample script poisseuille.tcl with a high viscosity.

The bounce back boundary conditions allow to set velocity at a boundary to a nonzero
value. This allows to create shear flow and boundaries moving relative to each other.
This could be a fixed sphere in a channel moving at a finite speed – corresponding
to the galilei-transform of a moving sphere in a fixed channel. The velocity boundary
conditions are implemented according to [49] eq. 12.58. Using this implementation as a
blueprint for the boundary treatment an implementation of the Ladd-Coupling should
be relatively straightforward.

Syntax

lbboundary force [nboundary]

Required features: LB_BOUNDARIES

Description

This variant prints out the force on boundary number n_boundary.

12.5. Choosing between the GPU and CPU implementations

Syntax

(1) lbfluid cpu

(2) lbfluid gpu

Required features: 1 LB 2 LB_GPU

Description

A very recent development is an implementation of the LBM for NVIDIA GPUs using
the CUDA framework. On CUDA-supporting machines this can be activated by config-
uring with configure --with-cuda=/path/to/cuda and activating the feature LB_GPU.
Within the ESPResSo-Tcl-script, the lbfluid command can be used to choose between
the CPU and GPU implementations of the Lattice-Boltzmann algorithm, for further
information on CUDA support see section 6.6.

Variant (1) is the default and turns on the standard CPU implementation of the
Lattice-Boltzmann fluid, while variant (2) turns on the GPU implementation, implying
that all following LB-related commands are executed on the GPU.

Currently only a subset of the CPU commands are available for the GPU implemen-
tation. For boundary conditions analogous to the CPU implementation, the feature
LB_BOUNDARIES_GPU has to be activated.

141

12.6. Electrohydrodynamics

Syntax
setmd mu_E µEx µEy µEz

Required features: LB LB_ELECTROHYDRODYNAMICS

Description
If the feature LB_ELECTROHYDRODYNAMICS is activated, the (non-GPU) Lattice Boltz-
mann Code can be used to implicitely model surrounding salt ions in an external electric
field by having the charged particles create flow.

For that to work, you need to set the electrophoretic mobility (multiplied by the
external E-field) µE in all 3 dimensions for your system. The three given parameters
are float values and should, for a meaningful system, be less than 1.0.

For more information on this method and how it works, read the publication [21].

142

13. External package: mbtools

mbtools1 is a set of tcl packages for setting up, analyzing and running simulations of
lipid membrane systems.

mbtools comes with a basic set of tabulated forces and potentials for lipid interactions
and some example scripts to help explain the syntax of the commands. If you make use
of mbtools or of these potentials please acknowledge us with a citation to:

* Cooke, I. R., Kremer, K. and Deserno, M. (2005): Tunable, generic model for fluid
bilayer membranes, Phys. Rev. E. 72 - 011506

13.1. Introduction

mbtools is located in the folder Espresso/packages/mbtools.

One of the main features of mbtools is the ability to easily create initial lipid config-
urations with interesting geometries. These include flat membranes, cylinders, spheres,
toroids, and randomly distributed gases. Each of these shapes is referred to as a geom-
etry and any number of geometries can be combined in a single simulation. Once the
geometry has been chosen the user specifies the molecules which should be placed in
this geometry. For example one could choose sphere as a geometry and then define two
different lipids and/or a protein to be placed on the sphere. Within reason (e.g. size
restrictions) it should be possible to use any mixture of known molecule types on any
geometry. The molecule types available at present include proteins, lipids of any length,
and spherical colloids.

mbtools includes several miscellaneous utility procedures for performing tasks such
as warmup, setting tabulated interactions, designating molecules to be trapped and a
variety of topology related sorting or data analysis functions.

The analysis part of the mbtools package is designed to wrap together all the analysis
for a simulation into a single simple interface. At the beginning of the simulation the
user specifies which analyses should be performed by appending its name and arguments
to a variable, analysis_flags. After the analysis is setup one can then simply call do_-
analysis to perform all the specified proceedures. Analysis will store a data value each
time do_analysis is called. Then when a call to print_averages is made the average
of all stored values is printed to a file and the store of values is reset to nil.

1This documentation was written by Ira R. Cooke and published on his website. It has been transcripted
by Tristan Bereau.

143

13.2. Installing and getting started

Since mbtools is provided as part of the espresso molecular dynamics simulation package
you will need to download and install Espresso before you can use it. Espresso can be
downloaded free from http://espressomd.org.

Once you have installed espresso you can find mbtools by looking inside the packages

subdirectory. Inside the packages/mbtools directory you will see a directory for each
of the mbtools subpackages as well as an examples directory. All of the examples scripts
should work out of the box except those involving colloids which require you to install
icover.sh (see documentation for hollowsphere molecule type). To run the simplebilayer
example cd to the examples directory and then type:

$ESPRESSO_SOURCE/$PLATFORM/Espresso scripts/main.tcl simplebilayer.tcl

The first part of this command is simply the full path to the appropriate espresso
executable on your machine when running on multiple processors). Obviously you will
need to have the $ESPRESSO_SOURCE and $PLATFORM environment variables set for it to
work. After this executable the relative paths to two tcl scripts are given. The first of
these main.tcl is given as an argument to espresso and is therefore interpreted first by
the espresso tcl interpreter. The second tcl script simplebilayer.tcl is in turn passed
as an argument to main.tcl.

Why separate the tcl commands into two files ?
This is really a matter of preference but if we keep all of the key commands and

complex coding in a single file main.tcl and delegate simple parameter setting to a
separate file it tends to be much easier to manage large numbers of jobs with regularly
changing requirements. Regardless of your personal preferences, the important point to
note is that all of the important commands are contained in main.tcl and you should
probably start there to get an understanding for how mbtools works.

Running the simplebilayer example should produce a directory called simplebilayer

which contains the output from your simulation. To view the results cd to the simplebi-
layer directory and look at the contents. The directory contains many files including:

• The configurations generated during warmup : warm.∗.gz

• pdb files corresponding to warmup configurations : warm.vmd∗.gz

• The configurations generated during the main run : simplebilayer.∗.gz

• pdb files corresponding to main run configs : simplebilayer.vmd∗.gz

• The most recently generated checkpoint file : checkpoint.latest.gz

• A directory containing the second most recent checkpoint file: checkpoint_bak

• A file containing the topology of the system : simplebilayer.top

• The original parameter file with which you ran the simulation : simplebilayer.tcl

144

• A original parameter file with which you ran the simulation : simplebilayer.tcl

• Files containing analysis output for example : time_vs_boxl_tmp

• Force and energy tables : ∗.tab

• VMD script for visualising the warmup : warm_animation.script

• VMD script for visualising the main trajectory : vmd_animation.script

To visualise your results using the vmd scripts you need to make sure that you have
vmd installed properly and that you have the special vmd procedures used by the espresso
team (i.e. support for the loadseries command). Then you can visualise by typing:

vmd -e vmd_animation.script

13.3. The main.tcl script

The main.tcl file provided in the examples/scripts directory is a relatively complete
script written using mbtools. It is designed to run all of the examples provided but no
more. No doubt you will need to extend it for your own purposes.

13.3.1. Variables used by main.tcl

main.tcl expects the user to set various parameters in a parameters.tcl file (e.g.
simplebilayer.tcl). Some of these parameters have defaults and generally don’t need
to be worried about except for specific cases. In the following list variables that have no
default and therefore must be set in the parameter file are noted with an asterisk.

• thermo [Langevin] The type of thermostat to be used. Set to DPD for a dpd
thermostat. Any other value gives a langevin

• dpd gamma Required if you set the thermo to DPD

• dpd r cut Required if you set the thermo to DPD

• warmup temp [$systemtemp] The temperature at which the warmup is performed.
The default behaviour is to use the system temperature

• warmsteps [100] Number of integrate steps per warmup cycle

• warmtimes [20] Number of calls to integrate over which the warmup occurs

• free warmsteps [0] Warmup steps to be used for the warmup that occurs after
particles are freed of any temporary constraints.

• free warmtimes [0] Warmup times to be used for the warmup that occurs after
particles are freed of any temporary constraints.

145

• npt [off] Whether to use the constant pressure barostat

• p ext The pressure you want to simulate at. Required if npt is set to on

• piston mass box mass. Required if npt is set to ”on”

• gamma 0 Required if npt is on. Usually set to 1 as for langevin gamma

• gamma v Required if npt is on. Box friction

• use vmd [offline] vmd mode

• mgrid [8] The number of meshpoints per side for dividing the bilayer plane into a
grid

• stray cut off [1000.0] Distance of the end tail bead from the bilayer midplane
beyond which a lipid is deemed to have strayed from the membrane bulk.

• ∗systemtemp The temperature of the simulation during the main run

• ∗outputdir Directory for output

• ∗tabledir Directory where forcetables are kept

• ∗ident a name for the simulation

• ∗topofile the name of the file where the topology is written. Usually $ident.top

• ∗tablenames A list of forcetable names to be used

• ∗setbox l Box dimensions

• ∗bonded parms A complete list of the bonded interactions required

• ∗nb interactions A complete list of the non-bonded interactions required

• ∗system specs A list of system specifications (see documentation for the setup_-

system command in 13.5)

• ∗moltypes A list of molecule types (see documentation in 13.5)

• ∗warm time step timestep to be used during warmup integration

• ∗main time step timestep for the main integration run

• ∗verlet skin skin used for verlet nesting list criterion

• ∗langevin gamma langevin friction term

• ∗int n times number of times to do main integration

• ∗int steps number of steps in each main integration

146

• ∗analysis write frequency How often to calculate the analysis

• ∗write frequency How often to print out configurations

• vmdcommands a list of additional lines of commands to be written to the vmd_-

animation.script file

13.4. Analysis

The analysis package is designed to help organise the many possible analysis routines
that can be performed during a simulation. This documentation describes the basic user
interface commands and then all of the possible analysis routines. Instructions on how
to add a new analysis routine are given at the end of this section.

13.4.1. Basic commands

The following commands comprise the user interface to the analysis package.

At the start of a simulation all of the analysis that is to be performed is specified
using the setup_analysis command. Each time you want the analysis performed a call
to do_analysis should be made. One can then call print_averages to write results to
file.

::mbtools::analysis::setup_analysis : -outputdir.arg -suffix.arg

-iotype.arg -g.arg -str.arg

• commands [./] A tcl list where each element of the list is a string specifying the
name and complete argument list for a particular analysis to be carried out.

• outputdir [./] The directory where analysis output files will be created

• suffix [tmp] Suffix that will be appended to standard file names for analysis output

• iotype [a] The iotype that will be used when opening files for analysis. For an
explanation of the different iotypes see the documentation for the standard tcl
command open

• g [8] Number of grid points per side with which to divide the bilayer for height
profile analyses

• str [4.0] Distance of a tail bead from bilayer midplane beyond which a lipid is
deemed to be a stray lipid.

Sets up the analysis package for a simulation run or analysis run that is about to be
performed. This routine needs to be called before any analysis can be performed.

::mbtools::analysis::do_analysis :

147

Calls all of the analyze routines corresponding to commands setup in setup_analysis.
do_analysis should be called only after setup_analysis has already been called.

::mbtools::analysis::reset_averages :

Calls all of the resetav routines corresponding to commands setup in setup_analysis.
These routines vary from command to command but they typically reset the storage
and counter variables used for analysis results. reset_averages is typically only called
internally by print_averages

::mbtools::analysis::print_averages :

Calls all of the printav routines corresponding to commands setup in setup_analysis.
These routines typically print results to a file buffer. After printing the reset_averages
routine is called internally. print_averages should be called only after setup_analysis
has already been called.

13.4.2. Available analysis routines

boxl : -verbose : output || time_vs_boxl

Simply obtains the box dimensions from ESPResSo.

clusters : -alipid.arg -verbose : output || time_vs_clust,

sizehisto.[format %05d $time]

• alipid [1.29] Value for the area per lipid to be used in a making a rough calculation
of the area of clusters

Calls the espresso command analyze aggregation which groups molecules in the sys-
tem into aggregates. Output to time_vs_clust is: maximum cluster size, minimum
cluster size, average size of clusters including those of size 2 or greater, standard de-
viation of clusters including those of size 2 or greater, number of clusters of size 2 or
greater, total average cluster size, total cluster size standard deviation, total number
of clusters, length of the interface between clusters, standard deviation of the interface
length, number of clusters for which length was calculate.

Additionally, at each call of print_averages the complete size histogram is printed
to a file with the formatted name sizehisto.[format %05d $time].

density_profile : -nbins.arg -hrange.arg -beadtypes.arg

-colloidmoltypes.arg -r.arg -nogrid

-verbose : output || av_zprof

• nbins [100] Number of slices into which the height range is divided for the purpose
of calculating densities

148

• hrange [6] The maximum vertical distance from the bilayer midplane for which to
calculate densities. Note that the complete vertical range is therefore 2*varhrange

• beadtypes [0] A tcl list of the bead types for which to calculate a density profile

• colloidmoltypes [] A tcl list of molecule types identifying the molecules which are
colloids in the system. The default value is a null list

• r [0] A tcl list of sphere radii corresponding to the radii for each colloid type in the
system. If this is non-zero the density profile will be calculated in spherical shells
about the colloids in the system identified via colloidmoltypes or if colloidmoltypes
is not set then the system center of mass is assumed for the colloid/vesicle center

• nogrid If this is set a grid mesh will not be used to refine the density profile
calculation by taking into account vertical differences between mesh points

Calculates the number density of each of the beadtypes given in beadtypes as a function
of the vertical distance from the bilayer midplane. Lipids are also sorted according to
their orientation and assigned to upper or lower leaflets accordingly. Thus for a system
with 3 beadtypes we would obtain 6 columns of output corresponding to 0 (lower) 1
(lower) 2 (lower) 2 (upper) 1 (upper) 0 (upper) where the number refers to the bead
type and upper or lower refers to the bilayer leaflet.

energy : -verbose : output || time_vs_energy

Obtains the internal energies of the system from the analyze energy command of
ESPResSo.

flipflop : -verbose : output || time_vs_flip

Makes a call to the analyze get_lipid_orients command of ESPResSo and compares
this with a reference set of lipid orients obtained at the start of the simulation with
setup_analysis. Based on this comparison the number of lipids which have flipped
from their original positions is calculated

fluctuations : -verbose : output || powav.dat

Routine for calculating the power spectrum of height and thickness fluctuations for a flat
bilayer sheet. Uses the modes_2d routine in ESPResSo to calculate the height and thick-
ness functions and perform the fft. See the documentation in the file fluctuations.tcl
for detail on what is calculated and how to obtain a stiffness value from the resulting
output. Note that this routine causes a crash if it detects a large hole in the bilayer.

localheights : -range.arg -nbins.arg -rcatch.arg -verbose :

output || av_localh

• range [1.0] Range of local height deviations over which to bin

149

• nbins [100] Number of slices to divide up the height range into for the purposes of
creating a profile

• rcatch [1.9] The distance about a single lipid to use a starting value for finding the
6 closest neighbours

For each lipid we calculate its 6 nearest neighbours and then calculate the height differ-
ence between the central lipid and these neighbours. Taking these 6 values for each lipid
we then create a histogram of number densities as a function of the height difference.

localorients : -range.arg -nbins.arg -verbose : output || av_localo

• range [1.0] Range of orientation deviations to consider

• nbins [100] Number of bins to use for histogram

Calculates the projection of the lipid orientation vector onto the xy plane for each lipid
and then bins the absolute values of these vectors.

orient_order : -verbose : output || time_vs_oop

Calculates the orientational order parameter S for each lipid through a call to the
espresso command analyze lipid_orient_order.

stress_tensor : -verbose : output || time_vs_stress_tensor

Calculates all 9 elements of the pressure tensor for the system through a call to the
espresso command analyze stress_tensor

pressure : -verbose : output || time_vs_pressure

Calculates the isotropic pressure through a call to analyze pressure. Results are
printed as a list of the various contributions in the following order: p inst , total , ideal ,
FENE , harmonic, nonbonded . Where p inst is the instantaneous pressure obtained
directly from the barostat.

stray : -verbose : output || time_vs_stray

Calculates the number of stray lipids based on a call to analyze get_lipid_orients.

13.4.3. Adding a new routine

To add a new analysis routine you should create a new file called myanalysis.tcl which
will contain all of your code. At the top of this file you should declare a namespace for
your analysis code and include all of the internal variables inside that namespace as
follows;

150

namespace eval ::mbtools::analysis::myanalysis {
variable av_myresult

variable av_myresult_i

variable f_tvsresult

variable verbose

namespace export setup_myanalysis

namespace export analyze_myanalysis

namespace export printav_myanalysis

namespace export resetav_myanalisis

}

Import your new file into the analysis package by adding a line like the following to
the analysis.tcl file.

source [file join [file dirname [info script]] myanalysis.tcl]

You then need to implement the following essential functions within your new names-
pace.

• ::mbtools::analysis::myanalysis::setup_myanalysis { args }
Typically you would use this function to initialise variables and open files.

Called by ::mbtools::analysis::setup_analysis. Arguments are allowed.

• ::mbtools::analysis::myanalysis::printav_myanalysis { void }
This function should print results to a file.

Called by ::mbtools::analysis::print_averages. Arguments are not allowed.

• ::mbtools::analysis::myanalysis::analyze_myanalysis { void }
This function performs the actual analysis and should update the storage and
averaging variables. Called by ::mbtools::analysis::do_analysis. Arguments
are not allowed.

• ::mbtools::analysis::myanalysis::resetav_myanalysis { void }
This function should update averages and reset variables accordingly depending
on your requirements.

Called by ::mbtools::analysis::reset_averages. Arguments are not allowed.

If any of these functions is not implemented the program will probably crash.

13.5. System generation

Package for setting up lipid membrane systems in a variety of geometrical shapes.

151

13.5.1. Basic commands

::mbtools::system_generation::setup_system : [system_specs]

[iboxl] [moltypes]

• system_specs This is a list of structures called system specifications. Each such
system specification in turn should be a list consisting of a geometry and a list
detailing the number of each molecule type i.e.

set system_spec { geometry n_molslist }

The geometry should be specified as a list with two elements. The first element
should be a string “geometry” identifying this list as a geometry. The second
element is a string containing the name of a geometry type mygeometry followed
by arguments to be passed to the routine create_mygeometry.

The n molslist should be specified as a list with two elements. The first element
should be a string “n molslist” identifying this list as an n molslist. The second
element is a list each element of which specifies a molecule type and the number
of such molecules.

• boxl A list containing the lengths of each of the box side lengths.

• moltypes A list, each element of which specifies a molecule type and type informa-
tion. The exact format and requirements of this list are detailed for each molecule
separately (see below for a list of molecule types and their requirements) however
regardless of mol type the first two elements of the list must be a moltypeid and a
string specifying the moltype respectively.

Sets up the system including generating topologies and placing molecules into specified
geometries. Each geometry and list of molecules to be placed into that geometry are
grouped into a system spec.

Example:

The following code sets out the molecule types to be used in the simulation by setting
a list called moltypes. In this case two different lipid types are setup and assigned to
moltypeids 0 and 1 respectively. Moltype 0 will consist of three beads per lipid, the
first of which is of atomtype 0 and the second and third of which are of atomtype 1.
Bonds in the lipid will be of type 0 and 1 respectively.(see the ::mbtools::system_-

generation::place_lipid_linear function for further details).

set moltypes [list { 0 lipid { 0 1 1 } { 0 1 } }
{ 1 lipid { 0 2 2 2 } { 0 2 } }]

We then construct system specs for a flat bilayer and a spherical bilayer and group
these into a system specs list.

First the spherical system specs

152

set geometry { geometry "sphere -shuffle -c { 0.0 0.0 15.0 } " }
set n_molslist { n_molslist { { 0 1000 } } }
lappend spherespec $geometry

lappend spherespec $n_molslist

The flat system spec

set geometry { geometry "flat -fixz" }
set n_molslist { n_molslist { { 1 3000 } } }
lappend bilayerspec $geometry

lappend bilayerspec $n_molslist

Now group together the systemspecs into a master list

lappend system_specs $spherespec

lappend system_specs $bilayerspec

Make the call to setup_system

::mbtools::system_generation::setup_system $system_specs

[setmd box_l] $moltypes

::mbtools::system_generation::get_trappedmols :

returns the internal list variable trappedmols which keeps track of all molecules that have
been trapped by their center of mass. This function should be called after setup and
would then typically be passed to the function ::mbtools::utils:trap_mols.

::mbtools::system_generation::get_userfixedparts :

returns the internal list variable userfixedparts which keeps track of all particles that
have been fixed in position during the setup. This is useful for later releasing particles
after warmup routines have been completed.

::mbtools::system_generation::get_middlebead :

returns the internal variable middlebead .

13.5.2. Available geometries

flat : -fixz -bondl.arg -crystal -half -pancake -shuffle

• fixz Fix the vertical positions of all particles. The ids of these particles are
added to the list of userfixedparts which can later be obtained through a call
to ::mbtools::system_generation::get_userfixedparts.

• crystal Sets lipids on a grid, instead of randomly.

153

• half Creates a halfbilayer (i.e. periodic only along one direction). Useful to mea-
sure a line tension.

• pancake Creates a spherical and flat bilayer. The diameter of the pancake cannot
exceed the box l.

• shuffle shuffle the topology prior to placing the lipids. This is required for a random
lipid distribution because otherwise the lipids will be placed on the sphere in the
order they appear in the topology

Creates a flat bilayer in the XY plane by random placement of lipids.

sphere : -c.arg -initarea.arg -bondl.arg -shuffle

• c [{0.0 0.0 0.0}] The location of the center of the sphere relative to the center
of the box

• initarea [1.29] An initial guess for the area per lipid. This guess is used to compute
initial sphere dimensions based on the number of lipids. This initial guess is then
iteratively refined until all lipids can be fit uniformly on the sphere.

• shuffle shuffle the topology prior to placing the lipids. This is required for a random
lipid distribution because otherwise the lipids will be placed on the sphere in the
order they appear in the topology

Creates a spherical vesicle by placing molecules in an ordered manner at uniform density
on the surface of the sphere. Molecules are assumed to have a uniform cross sectional
area and closely matched (though not identical) lengths. The radius of the vesicle will
depend on the number of lipids and the area per lipid.

sphere_cap : -r.arg -half -c.arg -initarea.arg -bondl.arg -shuffle

• r [10.0] The radius of the whole sphere where the cap is shaped

• half Create a half of sphere with the amount of molecules available

• c [{0.0 0.0 0.0}] The location of the center of the sphere relative to the center
of the box

• initarea [1.29] An initial guess for the area per lipid. This guess is used to compute
initial sphere dimensions based on the number of lipids. This initial guess is then
iteratively refined until all lipids can be fit uniformly on the sphere.

• shuffle shuffle the topology prior to placing the lipids. This is required for a random
lipid distribution because otherwise the lipids will be placed on the sphere in the
order they appear in the topology

154

Creates a spherical cap which is part of a vesicle of a radius r , by placing molecules in an
ordered manner at uniform density on the surface of the sphere. Molecules are assumed
to have a uniform cross sectional area and closely matched (though not identical) lengths.
If the option half is defined, the radius of the vesicle will depend on the number of lipids
and the area per lipid.

torus : -c.arg -initarea.arg -ratio.arg -bondl.arg -shuffle

• c [{0.0 0.0 0.0}] The location of the center of the torus relative to the center of
the box.

• initarea [1.29] An initial guess for the area per lipid. This guess is used to compute
initial radii based on the number of lipids. This initial guess is then iteratively
refined until all lipids can be fit uniformly on the torus.

• ratio [1.4142] Ratio of major toroidal radius to minor toroidal radius. Default
value is for the Clifford torus.

• shuffle shuffle the topology prior to placing the lipids. This is required for a random
lipid distribution because otherwise the lipids will be placed on the torus in the
order they appear in the topology.

Creates a toroidal vesicle by placing molecules in an ordered manner at uniform density
on the surface of the torus. Molecules are assumed to have a uniform cross sectional
area and closely matched (though not identical) lengths. The two radii of the torus will
depend on the number of lipids, the area per lipid and the ratio between radii.

cylinder : -c.arg -initarea.arg -bondl.arg -shuffle

• c [0.0 0.0 0.0]

• initarea [1.29]

• shuffle shuffle the topology prior to placing the lipids.

Creates a cylinder which spans the box along one dimension by placing molecules uni-
formly on its surface. Works in a similar way to the sphere routine.

random : -exclude.arg -inside.arg -shuffle -bondl.arg

• exclude.arg [] an exclusion zone definition suitable for passing to
::mbtools::utils::isoutside.

• inside.arg [] an inclusion zone definition suitable for passing to
::mbtools::utils::isoutside.

• shuffle shuffle the topology prior to placing the lipids.

155

Places molecules randomly in space with a (sortof) random orientation vector. If an
exclusion zone is defined, then no molecules will be placed such that their positions are
within the zone. If an inclusion zone if defined, then no molecules will be place outside
this zone. For instance,

set geometry { geometry "random -exclude { sphere { 0.0 0.0 0.0 } 4.0 }
-inside { cuboid { 0.0 0.0 0.0 } { 15.0 15.0 15.0 } }" }

will randomly place molecules within the volume between a sphere with a radius of 4.0
and a cuboid with dimension 15.0× 15.0× 15.0 at the origin.

readfile : -ignore.arg -f.arg -t.arg

• ignore.arg [] particle properties to be ignored during the file read.

• f .arg [] The file containing the configuration to be used for setup. Must be an
espresso blockfile with box length, particle and bonding information.

• t .arg [] The topology file corresponding to the file to be read.

• tol .arg [0.000001] Tolerance for comparison of box dimensions.

Use particle positions contained in a file to initialise the locations of particles for a
particular geometry. The box dimensions in the file and those set by the user are
compared and an error is returned if they are not the same to within a tolerance value
of tol . Even though we read from a file we also generate a topology from the nmolslist
and this topology is compared with the topology that is read in to check if the number
of particles are the same.

singlemol : -c.arg -o.arg -trapflag.arg -ctrap.arg

-trapspring.arg -bondl.arg

• c.arg [0.0 0.0 0.0] The molecule center. Exactly what this means depends on
the molecule type.

• o.arg [0.0 0.0 1.0] The orientation vector for the molecule. This is also molecule
type dependent

• trapflag .arg [0 0 0] Set this optional argument to cause a molecule to be trapped
by its center of mass. You should give three integers corresponding to each of the
three coordinate axes. If a value of 1 is given then motion in that axis is trapped.

• ctrap.arg [””] Set this optional argument to the central point of the trap. This
works much like an optical trap in that molecules will be attracted to this point
via a simple harmonic spring force

• trapspring .arg [20] The spring constant for the trap potential (harmonic spring).

Simply place a single molecule at the desired position with the desired orientation.

156

13.5.3. Adding a new geometry

To create a routine for setting up a system with a new type of geometry mygeom. Start
by creating a new file mygeom.tcl inside the system_generation directory. The new file
should declare a new namespace mygeom as a sub namespace of ::mbtools::system_-
generation and export the proceedure create_mygeom. Thus your mygeom.tcl file
should begin with the lines

namespace eval ::mbtools::system_generation::mygeom {
namespace export create_mygeom

}

Import your new file into the system_generation package by adding a line like the
following to the system_generation.tcl file

source [file join [file dirname [info script]] mygeom.tcl]

You then need to implement the create_mygeom proceedure within your new names-
pace as follows

::mbtools::system_generation::mygeom::create_mygeom args

13.5.4. Available molecule types

lipid : typeinfo : { moltypeid "lipid" particletypelist

bondtypelist }

• particletypelist A list of the particle types for each atom in the lipid. The particles
are placed in the order in which they appear in this list.

• bondtypelist A list of two bondtypeids. The first id is used for bonds between
consecutive beads in the lipid. The second bondtypeid defines the pseudo bending
potential which is a two body bond acting across beads separated by exactly one
bead.

Places atoms in a line to create a lipid molecule.

hollowsphere : typeinfo : { moltypeid "hollowsphere"

sphereparticlelist bondtype natomsfill }

• sphereparticlelist A list of the particle types for each atom in the hollowsphere.
The atoms that make up the outer shell must be listed first followed by the atoms
that make up the inner filling.

• bondtype The typeid for bonds linking atoms in the outer shell.

• natomsfill Number of filler atoms. The atom types for these will be obtained from
the last natomsfill in the sphereparticlelist .

157

Creates a sphere of beads arranged such that they have an approximate spacing of bondl
and such that they optimally cover the sphere. The optimal covering is obtained using
the icover routines which are copyright R. H. Hardin, N. J. A. Sloane and W. D. Smith,
1994, 2000. Thus the routine will only work if you have installed icover and if you can
successfully run it from the command line in the directory that you started your espresso
job. These routines are serious overkill so if anybody can think of a nice simple algorithm
for generating a covering of the sphere let us know.

protein : typeinfo : { moltypeid "protein" particletypelist

bondtypelist }

• particletypelist A list of the particle types for each atom in the protein.

• bondtypelist A list of bondtypeids.

Create a protein molecule.

spanlipid : typeinfo : { moltypeid "protein" particletypelist

bondtypelist }

• particletypelist A list of the particle types for each atom in the lipid. Since this
is a spanning lipid the first and last elements of this list would typically be head
beads.

• bondtypelist A list of two bondtypeids with the same meaning as explained above
for standard lipids.

Create a lipid which spans across the bilayer.

13.5.5. Adding a new molecule type

To add a new molecule type you need to define a proceedure which determines how the
atoms that make up the molecule should be placed. This proc will live directly in the
::mbtools::system_generation namespace. Examples can be found in place.tcl.

In order to register your new molecule type to allow placement in any geometry you
need to add a call to it in the function ::mbtools::system_generation::placemol.
Make sure that all arguments to your place_mymolecule routine are included in this
function call.

13.6. Utils

Useful utilities routines for various types. Includes file management, basic geometry and
math procedures.

158

13.6.1. Setup commands

::mbtools::utils::setup_outputdir : [outputdir] -paramsfile.arg

-tabdir.arg -tabnames.arg -startf.arg -ntabs.arg

• outputdir Complete path of the directory to be setup. At least the parent of the
directory must exist

• paramfile [] Name of a file to be copied to the output directory

• tabdir [] Full path name of the directory where forcetables are kept

• tabnames [] Complete list of forcetables to be used in the simulation. These will
be copied to the output directory

This routine is designed to setup a directory for simulation output. It copies forcetables
and the parameter file to the directory after creating it if necessary.

::mbtools::utils::read_startfile : [file]

• file Complete path of the file to be read. Should be an espresso blockfile.

Read in particle configuration from an existing file or simulation snapshot

::mbtools::utils::read_checkpoint : [dir]

• dir Directory containing the checkpoint file which must be called checkpoint.latest.gz.

Read in a checkpoint and check for success. Warn if the checkpoint does not exist.

::mbtools::utils::read_topology : [file]

• file Complete path of the file that contains the topology information.

Read in the topology from a file and then execute the analyze set "topo_part_sync"

command of ESPResSo.

::mbtools::utils::set_topology : [topo]

• topo A valid topology.

Set the given topology and then execute the analyze set "topo_part_sync" command
of ESPResSo.

::mbtools::utils::set_bonded_interactions : [bonded_parms]

• bondedparms A list of bonded interactions. Each element of this list should contain
all the appropriate arguments in their correct order for a particular call to the
espresso inter command. See the espresso inter command for a list of possible
bonded interactions and correct syntax.

159

Set all the bonded interactions.

::mbtools::utils::set_nb_interactions : [nb_parms]

• nb parms A list of interactions. Each element of this list should contain all the
appropriate arguments in their correct order for a particular call to the espresso
inter command. See the espresso inter command for a list of possible non-bonded
interactions and correct syntax.

Set all the bonded interactions.

::mbtools::utils::init_random : [n_procs]

• n procs The number of processors used in this job.

Initialize the random number generators on each processor based on the current time
with a fixed increment to the time seed used for each proc.

::mbtools::utils::initialize_vmd : [flag] [outputdir]

[ident] -extracommands.arg

• flag Depending on the value of this parameter initialize vmd to one of its possible
states:

– interactive : VMD is started and a connection to espresso established for
immediate viewing of the current espresso process. With some luck this might
even work sometimes! If VMD doesn’t get a proper connection to espresso
then it will crash.

– offline : Just constructs the appropriate psf and vmd_animation.script

files and writes them to the output directory so that pdb files generated with
writepdb can be viewed with vmd -e vmd_animation.script.

– default : Any value other than those above for flag will just result in vmd not
being initialized.

• outputdir The directory where vmd output will be written.

• ident A basename to be be given to vmd files.

• extracommands [] A list of strings each of which will be written to the end of the
vmd_animationscript. Use this to give additional commands to vmd.

Prepare for vmd output.

160

13.6.2. Warmup commands

::mbtools::utils::warmup : [steps] [times] -mindist.arg

-cfgs.arg -outputdir.arg -vmdflag.arg -startcap.arg

-capgoal.arg

• steps number of integration steps used in each call to integrate.

• times number of times to call the integrate function during warmup.

• mindist [0] Terminate the warmup when the minimum particle distance is greater
than this criterion. A value of 0 (default) results in this condition being ignored.
If a condition is imposed this routine can become very very slow for large systems.

• cfgs [-1] Write out a configuration file every cfgs calls to integrate.

• outputdir [./] The directory for writing output.

• vmdflag [offline] If this flag is set to ”offline” (default) pdb files will be generated
for each configuration file generated.

• startcap [5] Starting value for the forcecap.

• capgoal [1000] For the purposes of calculating a cap increment this value is used
as a goal. The final forcecap will have this value.

Perform a series of integration steps while increasing forcecaps from an initially small
value.

13.6.3. Topology procs

::mbtools::utils::maxpartid : [topo]

• topo A valid topology.

Find the maximum particle id in a given topology.

::mbtools::utils::maxmoltypeid : [topo]

• topo A valid topology.

Find the maximum molecule type id.

::mbtools::utils::listnmols : [topo]

• topo A valid topology.

Construct a list with the number of molecules of each molecule type.

::mbtools::utils::minpartid : [topo]

161

• topo A valid topology.

Minimum particle id for the given topology.

::mbtools::utils::minmoltype : [topo]

• topo A valid topology/

Minimum molecule type id for this topology.

::mbtools::utils::listmoltypes : [topo]

• topo A valid topology.

Make a list of all the molecule types in a topology. Makes a check for duplication which
would occur for an unsorted topology.

::mbtools::utils::listmollengths : [topo]

• topo A valid topology.

Works out the length (number of atoms) of each molecule type and returns a list of these
lengths.

13.6.4. Math procs

::mbtools::utils::dot_product : A B

Returns A dot B

::mbtools::utils::matrix_vec_multiply : A B

Return the product of a matrix A with a vector B

::mbtools::utils::calc_proportions : ilist

Calculate the number of times each integer occurs in the list ilist.

::mbtools::utils::average : data from to

• data A list of numbers to be averaged

• from Optional starting index in data

• to Optional ending index in data

Calculate the mean of a list of numbers starting from from going up to to.

::mbtools::utils::stdev : data from to

162

• data A list of numbers to find the std deviation of

• from Optional starting index in data

• to Optional ending index in data

Calculate the standard deviation of a list of numbers starting from from going up to to.

::mbtools::utils::acorr : data

• data Data for which an autocorrelation is to be calculated

Calculate an autocorrelation function on a set of data.

::mbtools::utils::distance : pos1 pos2

• pos1 A position vector

• pos2 A position vector

Calculate the distance between two points whose position vectors are given.

::mbtools::utils::distance_min : pos1 pos2

• pos1 A position vector

• pos2 A position vector

Calculate the minimum image distance between two position vectors.

::mbtools::utils::min_vec : pos1 pos2

• pos1 A position vector

• pos2 A position vector

Calculate the minimum image vector from position vector2 to postition 1, i.e. pos1 -
pos2.

::mbtools::utils::normalize : vec

• vec The vector to be normalised

Normalize a vector

::mbtools::utils::scalevec : vec scale

• vec The vector to be scaled

• scale Scaling factor

Multiply all elements of a vector by a scaling factor

::mbtools::utils::uniquelist : original

• original A list possibly containing duplicate elements

Construct a list of all the unique elements in the original list removing all duplication.

163

13.6.5. Miscellaneous procs

::mbtools::utils::trap_mols : molstotrap

• molstotrap A list of trap values for molecules. This list would typically be obtained
by calling ::mbtools::get_trappedmols immediately after the system has been
setup.

Set the trap value for a list of molecules.

::mbtools::utils::isoutside : [pos] [zone]

• pos The point whose status is to be determined

• zone This will be a tcl list. The first element of the list must be a string with the
name of the zone type and subsequent elements will be further information about
the zone. Available zones are:

– sphere : center radius

– cuboid : center {L W H}

Determines whether the point at pos is outside the zone. Parameter center should be a
tcl list. Returns 1 if it is and 0 if it is not.

::mbtools::utils::calc_com : mol

• mol The molecule

Calculate the center of mass of a molecule.

::mbtools::utils::centersofmass_bymoltype : [moltypes]

• moltypes A list of molecule type ids

Determine the center of mass of every molecule whose type matches an item in the list
moltypes. Returns a nested list where each element in the list is itself a list of centers
of mass for a given moltype.

13.7. mmsg

mmsg is designed to provide a more controlled way of printing messages than the simple
puts commands of Tcl. It has an ability to turn on or off messages from particular
namespaces.

164

13.7.1. Basic commands

The following commands represent the standard interface for the mmsg package. For
consistency one should use these instead of a bare puts to standard out. mbtools makes
extensive use of these commands.

::mmsg::send : [namespace] [string] { [newline] }

• namespace A namespace. Typically this should be the current namespace which
one can get via namespace current

• string The message you want printed

• newline [yes] Set this to anything other than ”yes” and no carriage return will be
used after the message

The mmsg equivalent of puts. Designed for printing of simple status or progress mes-
sages.

::mmsg::err : [namespace] [string] { [newline] }

• namespace A namespace. Typically this should be the current namespace which
one can get via namespace current

• string The message you want printed

• newline [yes] Set this to anything other than ”yes” and no carriage return will be
used after the message

Prints error messages and causes program to exit.

::mmsg::warn : [namespace] [string] { [newline] }

• namespace A namespace. Typically this should be the current namespace which
one can get via namespace current

• string The message you want printed

• newline [yes] Set this to anything other than ”yes” and no carriage return will be
used after the message

Prints warning messages.

::mmsg::debug : [namespace] [string] { [newline] }

• namespace A namespace. Typically this should be the current namespace which
one can get via namespace current

• string The message you want printed

• newline [yes] Set this to anything other than ”yes” and no carriage return will be
used after the message

Prints debug messages.

165

13.7.2. Control commands

mmsg does several checks before it decides to print a message. For any given message
type it checks if that message type is allowed. It also checks to see if the namespace
given as an argument is in the allowable namespaces list. The default behaviour is to
print from the main mbtools namespaces and the global namespace

{ :: ::mbtools::system_generation ::mbtools::utils ::mbtools::analysis }

Note that children of these namespaces must be explicitly enabled. All message types
except debug are also enabled by default. The following commands allow this default
behaviour to be changed.

::mmsg::setnamespaces : namespacelist

• namespacelist A list of all namespaces from which messages are to be printed

Allows control over which namespaces messages can be printed from.

::mmsg::enable : type

• type A string indicating a single message type to enable. Allowable values are
”err”, ”debug”, ”send” and ”warn”

Allows particular message types to be enabled: For example one could enable debug
output with

mmsg::enable "debug"

::mmsg::disable : type

• type A string indicating a single message type to disable. Allowable values are
”err”, ”debug”, ”send” and ”warn”

Allows particular message types to be disabled: For example one could disable warning
output with

mmsg::enable "warn"

166

14. Under the hood

• Implementation issues that are interesting for the user

• Main loop in pseudo code (for comparison)

14.1. Internal particle organization

Since basically all major parts of the main MD integration have to access the particle
data, efficient access to the particle data is crucial for a fast MD code. Therefore the
particle data needs some more elaborate organisation, which will be presented here. A
particle itself is represented by a structure (Particle) consisting of several substructures
(e. g. ParticlePosition, ParticleForce or ParticleProperties), which in turn represent
basic physical properties such as position, force or charge. The particles are organised
in one or more particle lists on each node, called Cell cells. The cells are arranged by
several possible systems, the cellsystems as described above. A cell system defines a way
the particles are stored in ESPResSo, i. e. how they are distributed onto the processor
nodes and how they are organised on each of them. Moreover a cell system also defines
procedures to efficiently calculate the force, energy and pressure for the short ranged
interactions, since these can be heavily optimised depending on the cell system. For
example, the domain decomposition cellsystem allows an order N interactions evaluation.

Technically, a cell is organised as a dynamically growing array, not as a list. This
ensures that the data of all particles in a cell is stored contiguously in the memory.
The particle data is accessed transparently through a set of methods common to all cell
systems, which allocate the cells, add new particles, retrieve particle information and
are responsible for communicating the particle data between the nodes. Therefore most
portions of the code can access the particle data safely without direct knowledge of the
currently used cell system. Only the force, energy and pressure loops are implemented
separately for each cell model as explained above.

The domain decomposition or link cell algorithm is implemented in ESPResSo such
that the cells equal the ESPResSo cells, i. e. each cell is a separate particle list. For an
example let us assume that the simulation box has size 20×20×20 and that we assign 2
processors to the simulation. Then each processor is responsible for the particles inside
a 10 × 20 × 20 box. If the maximal interaction range is 1.2, the minimal possible cell
size is 1.25 for 8 cells along the first coordinate, allowing for a small skin of 0.05. If one
chooses only 6 boxes in the first coordinate, the skin depth increases to 0.467. In this
example we assume that the number of cells in the first coordinate was chosen to be 6
and that the cells are cubic. ESPResSo would then organise the cells on each node in
a 6 × 12 × 12 cell grid embedded at the centre of a 8 × 14 × 14 grid. The additional

167

cells around the cells containing the particles represent the ghost shell in which the
information of the ghost particles from the neighbouring nodes is stored. Therefore the
particle information stored on each node resides in 1568 particle lists of which 864 cells
contain particles assigned to the node, the rest contain information of particles from
other nodes.a

Classically, the link cell algorithm is implemented differently. Instead of having sep-
arate particle lists for each cell, there is only one particle list per node, and a the cells
actually only contain pointers into this particle list. This has the advantage that when
particles are moved from one cell to another on the same processor, only the pointers have
to be updated, which is much less data (4 rsp. 8 bytes) than the full particle structure
(around 192 bytes, depending on the features compiled in). The data storage scheme
of ESPResSo however requires to always move the full particle data. Nevertheless, from
our experience, the second approach is 2-3 times faster than the classical one.

To understand this, one has to know a little bit about the architecture of modern
computers. Most modern processors have a clock frequency above 1GHz and are able
to execute nearly one instruction per clock tick. In contrast to this, the memory runs
at a clock speed around 200MHz. Modern double data rate (DDR) RAM transfers up
to 3.2GB/s at this clock speed (at each edge of the clock signal 8 bytes are transferred).
But in addition to the data transfer speed, DDR RAM has some latency for fetching the
data, which can be up to 50ns in the worst case. Memory is organised internally in pages
or rows of typically 8KB size. The full 2 × 200 MHz data rate can only be achieved if
the access is within the same memory page (page hit), otherwise some latency has to be
added (page miss). The actual latency depends on some other aspects of the memory
organisation which will not be discussed here, but the penalty is at least 10ns, resulting in
an effective memory transfer rate of only 800MB/s. To remedy this, modern processors
have a small amount of low latency memory directly attached to the processor, the cache.

The processor cache is organised in different levels. The level 1 (L1) cache is built
directly into the processor core, has no latency and delivers the data immediately on
demand, but has only a small size of around 128KB. This is important since modern
processors can issue several simple operations such as additions simultaneously. The
L2 cache is larger, typically around 1MB, but is located outside the processor core and
delivers data at the processor clock rate or some fraction of it.

In a typical implementation of the link cell scheme the order of the particles is fairly
random, determined e. g. by the order in which the particles are set up or have been
communicated across the processor boundaries. The force loop therefore accesses the
particle array in arbitrary order, resulting in a lot of unfavourable page misses. In the
memory organisation of ESPResSo, the particles are accessed in a virtually linear order.
Because the force calculation goes through the cells in a linear fashion, all accesses to a
single cell occur close in time, for the force calculation of the cell itself as well as for its
neighbours. Using the domain decomposition cell scheme, two cell layers have to be kept
in the processor cache. For 10000 particles and a typical cell grid size of 20, these two
cell layers consume roughly 200 KBytes, which nearly fits into the L2 cache. Therefore
every cell has to be read from the main memory only once per force calculation.

168

15. Getting involved

Up to date information about the development of ESPResSo can be found at the web
page http://espressomd.org As the important information can change in time, we
will not describe its contents in detail but rather request the reader to go directly to the
URL. Among other things, one can find information about the following topics there:

• FAQ

• Latest stable release of ESPResSo and older releases

• Obtaining development version of ESPResSo

• Archives of both developers’ and users’ mailing lists

• Registering to ESPResSo mailing lists

• Submitting a bug report

15.1. Community support and mailing lists

If you have any questions concerning ESPResSo which you cannot resolve by yourself,
you may post a message to the mailing list. Instructions on how to register to the mailing
lists and post messages can be found on the homepage http://espressomd.org. Before
posting a question and waiting for someone to answer, it may be useful to search the
mailing list archives or FAQ and see if you can get the answer immediately. For several
reasons it is recommended to send all questions to the mailing lists rather than to contact
individual developers:

• All registered users get your message and you have a higher probability that it is
answered soon.

• Your question and the answers are archived and the archives can be searched by
others.

• The answer may be useful also to other registered users.

• There may not be a unique answer to your problem and it may be useful to get
suggestions from different people.

Please remember that this is a community mailing list. It is other users and developers
who are answering your questions. They do it in their free time and are not paid for
doing it.

169

http://espressomd.org
http://espressomd.org

15.2. Contributing your own code

If you are planning to make an extension to ESPResSo or already have a piece of your
own code which could be useful to others, you are very welcome to contribute it to
the community. Before you start making any changes to the code, you should obtain
the current development version of it. For more information about how to obtain the
development version, refer to the homepage http://espressomd.org.

It is also generally a good idea to contact the mailing lists before you start major
coding projects. It might be that someone else is already working on the problem or has
a solution at hand.

15.3. Developers’ guide

Besides the User guide, ESPResSo also contains a Developers’ guide which is a program-
mer documentation automatically built from comments in the source code and using
Doxygen. It provides a cross-referenced documentation of all functions and data struc-
tures available in ESPResSo source code. It can be built by typing

make dg

in the build directory. Afterwards it can be found in the subdirectory of the build
directory: doc/dg/html/index.html.

A recent version of this guide can also be found on the ESPResSo homepage http:

//espressomd.org.

15.4. User’s guide

If, while reading this user guide, you notice any mistakes or badly (if at all) described
features or commands, you are very welcome to contribute to the guide and have others
benefit from your knowledge.

For this, you should also checkout the development version as described on the home-
page. As the user guide, like all ESPResSo code, is always in flow and changes are made
regularly, there are already many paragraphs marked with a “todo” box. To turn on
these boxes, edit the main file doc/ug/ug.tex and adapt the inclusion of the LATEX
package todonotes.

You can then build the user guide by typing

make ug

170

http://espressomd.org
http://espressomd.org
http://espressomd.org

A. ESPResSo quick reference

part pid [pos x y z] [type typeid] [v vx vy vz] [f fx fy fz]
[bond bondid pid2 ...] [temp T] 9 [gamma g] 9 [q charge] 1

[quat q1 q2 q3 q4] 2 [omega x y z] 2 [torque x y z] 2

[rinertia x y z] 2 [[un]fix x y z] 3 [ext_force x y z] 3

[exclude pid2...] 4 [exclude delete pid2...] 4 [mass mass] 5

[dipm moment] 6 [dip dx dy dz] 6 [virtual v] 7,8

[vs_relative pid distance] 8 [vs_auto_relate_to pid] 8

Required features: 1 ELECTROSTATICS 2 ROTATION 3 EXTERNAL_FORCES 4 EXCLUSION
5 MASS 6 DIPOLES 7 VIRTUAL_SITES_COM 8 VIRTUAL_SITES_RELATIVE
9 LANGEVIN_PER_PARTICLE

26

part pid print [(id | pos | type | folded_position | type | q | v | f |
fix | ext_force | bond | connections [range])]...

part

28

part pid delete

part deleteall

29

part auto_exclusions [range]
part delete_exclusions

Required features: EXCLUSIONS

29

polymer num polymers monomers per chain bond length
[start pid] [pos x y z] [mode (RW | SAW | PSAW) [shield [trymax]]]
[charge q] 1 [distance dcharged] 1 [types typeidneutral [typeidcharged]]

[bond bondid] [angle φ [θ [x y z]]] [constraints] 2

Required features: 1 ELECTROSTATICS 2 CONSTRAINTS

30

counterions N [start pid] [mode (SAW | RW) [shield [trymax]]]
[charge val] 1 [type typeid]

Required features: 1 ELECTROSTATICS

31

salt N+ N− [start pid] [mode (SAW | RW) [shield [trymax]]]
[charges val+ [val−]] 1 [types typeid+ [typeid−]] [rad r]

Required features: 1 ELECTROSTATICS

32

diamond a bond length monomers per chain [counterions NCI]
[charges valnode valmonomer valCI]

1 [distance dcharged] 1 [nonet]

Required features: 1 ELECTROSTATICS

32

171

icosaeder a monomers per chain [counterions NCI]
[charges valmonomers valCI]

1 [distance dcharged] 1

Required features: 1 ELECTROSTATICS

34

crosslink num polymer monomers per chain [start pid] [catch rcatch]
[distLink link dist] [distChain chain dist] [FENE bondid]
[trials trymax]

35

copy_particles [set id1 id2 ...| range from to ...] [shift s x s y s z] 35

constraint wall normal nx ny nz dist d type id [penetrable flag]
[reflecting flag]

constraint sphere center cx cy cz radius rad direction direction type

id [penetrable flag] [reflecting flag]
constraint cylinder center cx cy cz axis nx ny nz radius rad

length length direction direction type id [penetrable flag]
[reflecting flag]

constraint rhomboid corner px py pz a ax ay az b bx by bz

c cx cy cz direction direction type id [penetrable flag]
[reflecting flag]

constraint maze nsphere n dim d sphrad rs cylrad rc type id
[penetrable flag]

constraint pore center cx cy cz axis nx ny nz radius rad length length
type id

constraint rod center cx cy lambda lambda 1

constraint plate height h sigma sigma 1

constraint ext_magn_field fx fy fz
2,3

constraint plane cell x y z type id
constraint mindist_position x y z

Required features: CONSTRAINTS 1 ELECTROSTATICS 2 ROTATION 3 DIPOLES

36

constraint delete [num] 38

constraint force n 38

constraint [num] 38

inter 42

inter type1 type2 tabulated filename

Required features: TABULATED

42

inter type1 type2 lennard-jones ε σ rcut [(cshift|auto) [roff [rcap [rmin]]]]

Required features: LENNARD_JONES

43

inter type1 type2 lj-gen ε σ rcut cshift roff e1 e2 b1 b2 [(rcap|auto)]

Required features: LENNARD_JONES_GENERIC

43

inter type1 type2 lj-cos ε σ rcut roff

inter type1 type2 lj-cos2 ε σ roff ω

Required features: LJCOS LJCOS2

44

172

inter type1 type2 smooth-step σ1 n ε k0 σ2 rcut

Required features: SMOOTH_STEP

44

inter type1 type2 bmhtf-nacl A B C D σ rcut

Required features: BMHTF_NACL

45

inter type1 type2 morse ε α rmin rcut

Required features: MORSE

45

inter type1 type2 buckingham A B C D rcut rdiscont εshift

Required features: BUCKINGHAM

46

inter type1 type2 soft-sphere a n rcut roffset

Required features: SOFT_SPHERE

46

inter type1 type2 hertzian σ ε

Required features: HERTZIAN

47

inter type1 type2 lj-angle ε σ rcut b1a b1b b2a b2b [rcap z0 δz κ ε′]

Required features: LJ_ANGLE

47

inter type1 type2 gay-berne ε0 σ0 rcutoff k1 k2 µ ν

Required features: ROTATION GAY_BERNE

47

inter bondid fene K ∆rmax [r0] 49

inter bondid harmonic K R [rcut] 50

inter bondid subt_lj reserved R 50

inter bondid rigid_bond constrained bond distance positional tolerance
velocity tolerance

51

inter bondid tabulated bond filename
inter bondid tabulated angle filename
inter bondid tabulated dihedral filename

51

inter bondid virtual_bond 51

inter bondid angle K [φ0]

Required features: BOND_ANGLE_HARMONIC , BOND_ANGLE_COSINE or BOND_ANGLE_-

COSSQUARE

52

inter bondid dihedral n K p 52

inter coulomb 0.0

inter coulomb

inter coulomb parameters

53

inter coulomb lB p3m rcut (mesh | {meshx meshy meshz}) cao alpha

Required features: ELECTROSTATICS

54

inter coulomb lB p3m (tune | tunev2) accuracy accuracy
[r_cut rcut] [mesh mesh] [cao cao] [alpha α]

Required features: ELECTROSTATICS

55

inter coulomb [epsilon (metallic | epsilon)] [n_interpol points]
[mesh_off xoff yoff zoff]

55

173

inter coulomb lB dh κ rcut

Required features: ELECTROSTATICS

56

inter coulomb lB mmm2d maximal pairwise error [fixed far cutoff]
[dielectric εt εm εb] [dielectric-contrasts ∆t ∆b]

Required features: ELECTROSTATICS

57

inter coulomb lB mmm1d switch radius [bessel cutoff] maximal pairwise error
inter coulomb lB mmm1d tune maximal pairwise error

Required features: ELECTROSTATICS

57

inter coulomb lB memd f mass mesh [epsilon ε∞]

Required features: ELECTROSTATICS

58

inter coulomb elc maximal pairwise error gap size
[far cutoff] [noneutralization] [dielectric εt εm εb]
[dielectric-contrasts ∆t ∆b]

Required features: ELECTROSTATICS

58

iccp3m n induced charges convergence convergence criterion areas areas
normals normals sigmas sigmas epsilons epsilons [eps_out eps out]
[relax relaxation parameter] [max_iterations max iterations]
[ext_field ext field]

Required features: ELECTROSTATICS

59

dielectric sphere center cx cy cz radius r res res
dielectric wall normal nx ny nz dist d res res
dielectric cylinder center cx cy cz axis ax ay az radius r direction

d
dielectric pore center cx cy cz axis ax ay az radius r length l

smoothing_radius rs res res

60

inter magnetic 0.0

inter magnetic

inter magnetic parameters

61

inter magnetic lB p3m rcut mesh cao alpha

Required features: DIPOLES

62

inter magnetic lB p3m (tune | tunev2) accuracy accuracy
[r_cut rcut] [mesh mesh] [cao cao] [alpha α]

Required features: DIPOLES

62

inter magnetic mdlc accuracy gap size [far cutoff]

Required features: DIPOLES

63

inter magnetic lB dawaanr

Required features: DIPOLES

63

inter magnetic lB mdds n_cut value n cut

Required features: DIPOLES MAGNETIC_DIPOLAR_DIRECT_SUM

64

174

inter type1 type2 tunable_slip T γL rcut δt vx vy vz

Required features: TUNABLE_SLIP

64

inter type1 type2 inter_dpd gamma r cut wf tgamma tr cut twf

Required features: INTER_DPD

64

inter typeid1 typeid1 comfixed flag

Required features: COMFIXED

65

inter typeid1 typeid2 comforce flag dir force fratio

Required features: COMFORCE

66

inter ljforcecap (Fmax | individual)
inter morseforcecap (Fmax | individual)
inter buckforcecap (Fmax | individual)
inter tabforcecap (Fmax | individual)

Required features: LENNARD_JONES MORSE BUCKINGHAM TABULATED

66

setmd variable
setmd variable [value]+

66

thermostat

thermostat off

thermostat parameters

67

thermostat langevin temperature gamma 68

thermostat dpd temperature gamma r cut [WF wf tgamma tr cut TWF twf]

Required features: DPD or TRANS_DPD

70

thermostat inter_dpd temperature

Required features: INTER_DPD

70

thermostat npt_isotropic temperature gamma0 gammaV

Required features: NPT

71

nemd exchange n slabs n exchange
nemd shearrate n slabs shearrate
nemd off

nemd

nemd profile

nemd viscosity

Required features: NEMD

72

cellsystem domain_decomposition [-no_verlet_list] 73

cellsystem nsquare 73

cellsystem layered n layers 74

adress set topo kind width width hybrid width center x R x wf wf

Required features: ADRESSO

75

cuda list

cuda setdevice id
cuda getdevice

76

175

collision_detection

collision_detection off

collision_detection bind_centers d bond1
collision_detection bind_at_point_of_collision d bond1 bond2 type

76

integrate steps
integrate set [nvt]
integrate set npt_isotropic pext piston [x y z] [-cubic_box]

76

change_volume Vnew

change_volume Lnew (x | y | z | xyz)
77

stopParticles

stop_particles

79

velocities vmax [start pid] [count N] 79

invalidate_system 80

parallel_tempering::main -rounds N -swap swap -perform perform
[-init init] [-values {Ti}] [-connect master] [-port port]
[-load jnode] [-resrate Nreset] [-info info]

80

parallel_tempering::set_shareddata data 80

metadynamics

metadynamics set off

metadynamics set distance pid1 pid2 dmin dmax bheight bwidth fbound dbins

metadynamics set relative_z pid1 pid2 zmin zmax bheight bwidth fbound zbins

metadynamics print_stat current_coord

metadynamics print_stat coord_values

metadynamics print_stat profile

metadynamics print_stat force

metadynamics load_stat profile list force list
Required features: METADYNAMICS

81

analyze mindist [type list a type list b]
analyze distto pid
analyze distto x y z

84

analyze nbhood pid r catch
analyze nbhood x y z rcatch

85

analyze distribution part type list a part type list b
[rmin [rmax [rbins [log flag [int flag]]]]]

87

analyze radial_density_map xbins ybins xrange yrange
[axisofrotation centerofrotation beadtypelist [thetabins]]

88

analyze modes2d 88

analyze get_lipid_orients

analyze lipid_orient_order

88

analyze bilayer_set

analyze bilayer_density_profile

89

176

analyze cell_gpb Manningparameter outercellradius innercellradius
[accuracy [numberofinteractions]]

89

analyze get_folded_positions [-molecule] [shift x y z] 89

analyze Vkappa [(reset | read | set Vκ,1 Vκ,2 avk)] 89

analyze (rdf | <rdf>) part type list a part type list b [rmin rmax rbins] 89

analyze structurefactor type order 90

analyze vanhove type rmin rmax rbins [tmax] 90

analyze centermass partt ype 90

analyze momentofinertiamatrix typeid
analyze find_principal_axis typeid

91

analyze gyration_tensor [typeid] 91

analyze aggregation dist criteria s mol id f mol id
[min contact [charge criteria]]

91

analyze necklace pearl threshold back dist space dist first length 92

analyze holes typeidprobe mesh size 92

analyze energy

analyze energy (total | kinetic | coulomb | magnetic)
analyze energy bonded bondid
analyze energy nonbonded typeid1 typeid2

92

analyze pressure

analyze pressure total

analyze pressure (totals | ideal | coulomb |
tot_nonbonded_inter | tot_nonbonded_intra)

analyze pressure bonded bondid
analyze pressure nonbonded typeid1 typeid2
analyze pressure nonbonded_intra [typeid]
analyze pressure nonbonded_inter [typeid]

93

analyze stress_tensor

analyze stress_tensor total

analyze stress_tensor (totals | ideal | coulomb |
tot_nonbonded_inter | tot_nonbonded_intra)

analyze stress_tensor bonded bondt ype
analyze stress_tensor nonbonded typeid1 typeid2
analyze stress_tensor nonbonded_intra [typeid]
analyze stress_tensor nonbonded_inter [typeid]

94

analyze local_stress_tensor periodic x periodic y periodic z range start x
range start y range start z range x range y range z bins x bins y
bins z

94

analyze set chains [chain start n chains chain length]
analyze set topo_part_sync

analyze set

95

177

analyze (re | <re>) [chain start n chains chain length] 96

analyze (rg | <rg>) [chain start n chains chain length] 97

analyze (rh | <rh>) [chain start n chains chain length] 98

analyze (internal_dist | <internal_dist>) [chain start n chains chain length]98

analyze (bond_dist | <bond_dist>) [index index]
[chain start n chains chain length]

98

analyze (bond_l | <bond_l>) [chain start n chains chain length] 99

analyze (formfactor | <formfactor>) qmin qmax qbins
[chain start n chains chain length]

99

analyze rdfchain rmin rmax rbins [chains tart nchains chainl ength] 100

analyze (<g1>| <g2>| <g3>) [chains tart nchains chainl ength]
analyze g123 [-init] [chains tart nchains chainl ength]

100

analyze append

analyze remove [index]
analyze replace index
analyze push [size]
analyze configs config

100

analyze configs

analyze stored

101

uwerr data nrep col [s tau] [plot]
uwerr data nrep f [s tau [f args]] [plot]

102

observable new name [parameters+] 102

observable id print [formatted] 103

observable id delete 105

observable new needs_profile_specs [other parameters] [minx minx]
[maxx maxx] [miny miny] [maxy maxy] [minz minz]
[maxz maxz] [xbins xbins] [ybins ybins] [zbins zbins]

107

observable new needs_radial_profile_specs [other parameters]
[center <cx> <cy> <cx>] [maxr maxr] [minz minz]
[maxz maxz] [rbins rbins] [phibins phibins] [zbins zbins]

107

correlation new obs1 id1 [obs2 id2] corr_operation

operation dt dt tau_max tau max [tau_lin tau lin]
[compress1 name [compress2 name]]

108

correlation

correlation n_corr

108

correlation id autoupdate { start | stop}
correlation id update

correlation id finalize

109

178

correlation id write_to_file filename
correlation id print

correlation id print [average1 | variance1 | correlation_time]
correlation id print [average_errorbars]

111

blockfile channel write variable {varname1 varname2 ...}
blockfile channel write variable all

111

blockfile channel write tclvariable { varname1 varname2 ...}
blockfile channel write tclvariable all

blockfile channel write tclvariable reallyall

112

blockfile channel write particles what (range | all)
blockfile channel write bonds range
blockfile channel write interactions

115

blockfile channel write random

blockfile channel write bit_random

blockfile channel write seed

blockfile channel write bitseed

116

blockfile channel write configs 116

blockfile channel write start tag
blockfile channel write end

blockfile channel write tag [arg]...

116

blockfile channel read start

blockfile channel read toend

blockfile channel read (particles | interactions | bonds | variable |
seed | random | bitrandom | configs)

blockfile channel read auto

117

checkpoint_set destination [numconfigs [tclvar [iaflag [varflag [ranflag]]]]] 117

checkpoint_read source 118

polyBlockWrite path (param list | all) part list 119

polyBlockWriteAll destination [(tclvar | all) [(whatever |-)
[(state | seed |-)]]]

120

writevsf channelId [(short | verbose)] [radius (radii | auto)]
[typedesc typedesc] [ignore_charges]

120

writevcf channelId [(short | verbose)] [(folded | absolute)]
[pids (pids | all)] [userdata userdata]

121

vtfpid pid 122

writepsf file [-molecule] NP MPC NC I NpS NnS 123

writepdb file
writepdbfoldchains file chain start n chains chain length box l
writepdbfoldtopo file shift

124

179

imd connect [port]
imd positions [(-unfolded |-fold_chains)]
imd listen seconds
imd disconnect

124

prepare_vmd_connection [filename [wait [start]] [constraints]] 124

lbfluid [gpu] 2 [agrid agrid] 1 or 2 [dens density] 1 or 2 [visc viscosity] 1 or 2

[tau lb timestep] 1 or 2 [bulk_visc bulk viscosity] 1 or 2

[ext_force fx fy fz] 1 or 2 [friction gamma] 1 or 2

[gamma_odd gamma odd] 1 or 2 [gamma_even gamma even] 1 or 2

Required features: 1 LB 2 LB_GPU

125

lbfluid print_interpolated_velocity x y z 126

lbfluid print [vtk] property filename 128

lbfluid save_ascii_checkpoint filename lbfluid save_binary_checkpoint

filename lbfluid load_ascii_checkpoint filename lbfluid load_-

binary_checkpoint filename

128

thermostat lb 1 or 2 T

Required features: 1 LB 2 LB_GPU

128

lbnode x y z (print | set) args

Required features: LB

128

lbboundary shape shape args [velocity vx vy vz]

Required features: LB_BOUNDARIES

129

lbboundary force [nboundary]

Required features: LB_BOUNDARIES

129

lbfluid cpu

lbfluid gpu

Required features: 1 LB 2 LB_GPU

130

setmd mu_E µEx µEy µEz

Required features: LB LB_ELECTROHYDRODYNAMICS

137

system_com 138

system_com_vel 138

galileiTransformParticles 138

countBonds particlel ist 139

findPropPos particlepropertyl ist property 139

findBondPos particlepropertyl ist 140

timeStamp path prefix postfix suffix 141

180

B. Features

This chapter describes the features that can be activated in ESPResSo. Even if possible, it
is not recommended to activate all features, because this will negatively effect ESPResSo’s
performance.

Features can be activated in the configuration header myconfig.h (see section 3.4 on
page 24). Too activate FEATURE, add the following line to the header file:

#define FEATURE

B.1. General features

• PARTIAL_PERIODIC By default, all coordinates in ESPResSo are periodic. With
PARTIAL_PERIODIC turned on, the ESPResSo global variable periodic (see sec-
tion 6.1 on page 68) controls the periodicity of the individual coordinates. Note
that this slows the integrator down by around 10− 30%.

• ELECTROSTATICS This switches on the various electrostatics algorithms, such as
P3M. See section 5.6 on page 55 for details on these algorithms.

• DIPOLES This activates the dipole-moment property of particles; In addition, the
various magnetostatics algorithms, such as P3M are switched on. See section 5.6
on page 55 for details on these algorithms.

• ROTATION Switch on rotational degrees of freedom for the particles, as well as the
corresponding quaternion integrator. See section 4.1.1 on page 26 for details. Note,
that when the feature is activated, every particle has three additional degrees of
freedom, which for example means that the kinetic energy changes at constant
temperature is twice as large.

• ROTATIONAL_INERTIA

• EXTERNAL_FORCES Allows to define an arbitrary constant force for each particle
individually. Also allows to fix individual coordinates of particles, e.g. keep them
at a fixed position or within a plane.

• CONSTRAINTS Turns on various spatial constraints such as spherical compartments
or walls. This constraints interact with the particles through regular short ranged
potentials such as the Lennard–Jones potential. See section 4.3 on page 36 for
possible constraint forms.

181

• TUNABLE_SLIP Switch on tunable slip conditions for planar wall boundary condi-
tions. See section 5.8.1 on page 65 for details.

• MASS Allows particles to have individual masses. Note that some analysis proce-
dures have not yet been adapted to take the masses into account correctly.

• EXCLUSIONS Allows to exclude specific short ranged interactions within molecules.

• COMFORCE Allows to pull apart groups of particles

• COMFIXED Allows to fix the center of mass of all particles of a certain type.

• MOLFORCES

• BOND_CONSTRAINT Turns on the RATTLE integrator which allows for fixed lengths
bonds between particles.

• VIRTUAL_SITES_COM Virtual sites are particles, the position and velocity of which
is not obtained by integrating equations of motion. Rather, they are placed using
the position (and orientation) of other particles. The feature VIRTUAL_SITES_COM

allows to place a virtual particle into the center of mass of a set of other particles.
See section 4.4 for details.

• VIRTUAL_SITES_RELATIVE Virtual sites are particles, the position and velocity of
which is not obtained by integrating equations of motion. Rather, they are placed
using the position (and orientation) of other particles. The feature VIRTUAL_SITES_RELATIVE
allows for rigid arrangements of particles. See section 4.4 for details.

• VIRTUAL_SITES_NO_VELOCITY

• VIRTUAL_SITES_THERMOSTAT

• THERMOSTAT_IGNORE_NON_VIRTUAL

• BOND_VIRTUAL

• MODES

• ADRESS

• METADYNAMICS

• OVERLAPPED

• COLLISION_DETECTION Allows particles to be bound oo collision. See section ??

• OLD_RW_VERSION This switches back to the old, wrong random walk code of the
polymer. Only use this if you rely on the old behaviour and know what you are
doing.

182

In addition, there are switches that enable additional features in the integrator or
thermostat:

• NEMD Enables the non-equilbrium (shear) MD support (see section 6.3 on page 73).

• NPT Enables an on–the–fly NPT integration scheme (see section 6.2.3 on page 73).

• DPD Enables the dissipative particle dynamics thermostat (see section 6.2.2 on
page 71).

• TRANS_DPD Enables the transversal dissipative particle dynamics thermostat (see
section 6.2.2 on page 72).

• INTER_DPD Enables the dissipative particle dynamics thermostat implemented as
an interaction, allowing to choose different parameters between different particle
types (see section 6.2.2 on page 72).

• INTER_RF

• DPD_MASS_RED Enables masses in DPD using reduced, dimensionless mass units.

• DPD_MASS_LIN Enables masses in DPD using absolute mass units.

• LB Enables the lattice-Boltzmann fluid code (see section 12 on page 137).

• LB_ELECTROHYDRODYNAMICS Enables the implicit calculation of electro-hydrodynamics
for charged particles and salt ions in an electric field.

B.2. Interactions

The following switches turn on various short ranged interactions (see section 5.1 on
page 42):

• TABULATED Enable support for user–defined interactions.

• LENNARD_JONES Enable the Lennard–Jones potential.

• LENNARD_JONES_GENERIC Enable the generic Lennard–Jones potential with config-
urable exponents and individual prefactors for the two terms.

• LJCOS Enable the Lennard–Jones potential with a cosine–tail.

• LJCOS2 Same as LJCOS, but using a slightly different way of smoothing the con-
nection to 0.

• LJ_ANGLE Enable the directional Lennard–Jones potential.

• GAY_BERNE

• HERTZIAN

183

• MOL_CUT

• NO_INTRA_NB

• MORSE Enable the Morse potential.

• BUCKINGHAM Enable the Buckingham potential.

• SOFT_SPHERE Enable the soft sphere potential.

• SMOOTH_STEP Enable the smooth step potential, a step potential with two length
scales.

• BMHTF_NACL Enable the Born-Meyer-Huggins-Tosi-Fumi potential, which can be
used to model salt melts.

Some of the short range interactions have additional features:

• LJ_WARN_WHEN_CLOSE This adds an additional check to the Lennard–Jones po-
tentials that prints a warning if particles come too close so that the simulation
becomes unphysical.

• OLD_DIHEDRAL Switch the interface of the dihedral potential to its old, less flexible
form. Use this for older scripts that are not yet adapted to the new interface of
the dihedral potential.

If you want to use bondangle potentials, you currently need to choose the type by
the feature (see section 5.4 on page 53). This will change in the near future to three
independent angle potentials:

• BOND_ANGLE_HARMONIC

• BOND_ANGLE_COSINE

• BOND_ANGLE_COSSQUARE

• BOND_ANGLEDIST

• BOND_ENDANGLEDIST

B.3. Debug messages

Finally, there are a number of flags for debugging. The most important one are

• ADDITIONAL_CHECKS Enables numerous additional checks which can detect incon-
sistencies especially in the cell systems. This checks are however too slow to be
enabled in production runs.

184

• MEM_DEBUG Enables an internal memory allocation checking system. This produces
output for each allocation and freeing of a memory chunk, and therefore allows to
track down memory leaks. This works by internally replacing malloc, realloc
and free.

The following flags control the debug output of various sections of Espresso. You will
however understand the output very often only by looking directly at the code.

• COMM_DEBUG Output from the asynchronous communication code.

• EVENT_DEBUG Notifications for event calls, i. e. the on_? functions in initialize.c.
Useful if some module does not correctly respond to changes of e. g. global vari-
ables.

• INTEG_DEBUG Integrator output.

• CELL_DEBUG Cellsystem output.

• GHOST_DEBUG Cellsystem output specific to the handling of ghost cells and the
ghost cell communication.

• GHOST_FORCE_DEBUG

• VERLET_DEBUG Debugging of the Verlet list code of the domain decomposition cell
system.

• LATTICE_DEBUG Universal lattice structure debugging.

• HALO_DEBUG

• GRID_DEBUG

• PARTICLE_DEBUG Output from the particle handling code.

• P3M_DEBUG

• ESR_DEBUG debugging of P3Ms real space part.

• ESK_DEBUG debugging of P3Ms k–space part.

• EWALD_DEBUG

• FFT_DEBUG Output from the unified FFT code.

• MAGGS_DEBUG

• RANDOM_DEBUG

• FORCE_DEBUG Output from the force calculation loops.

• PTENSOR_DEBUG Output from the pressure tensor calculation loops.

185

• THERMO_DEBUG Output from the thermostats.

• LJ_DEBUG Output from the Lennard–Jones code.

• MORSE_DEBUG Output from the Morse code.

• FENE_DEBUG

• ONEPART_DEBUG Define to a number of a particle to obtain output on the forces
calculated for this particle.

• STAT_DEBUG

• POLY_DEBUG

• MOLFORCES_DEBUG

• LB_DEBUG Output from the lattice–Boltzmann code.

• VIRTUAL_SITES_DEBUG

• ASYNC_BARRIER Introduce a barrier after each asynchronous command completion.
Helps in detection of mismatching communication.

• FORCE_CORE Causes ESPResSo to try to provoke a core dump when exiting unex-
pectedly.

• MPI_CORE Causes ESPResSo to try this even with MPI errors.

186

C. Sample scripts

In the directory ESPResSo/samples you find several scripts that can serve as samples
how to use ESPResSo.

lj liquid.tcl Simple Lennard-Jones particle liquid. Shows the basic features of ESPResSo:
How to set up system parameters, particles and interactions. How to warm up and
integrate. How to write parameters, configurations and observables to files. How
to handle the connection to VMD.

kremerGrest.tcl This reproduces the data of Kremer and Grest [29]: Multiple systems
with different number of neutral polymer chains of various lengths are simulated for
very long times at melt density 0.85 while their static and some dynamic properties
are measured. Shows the advanced features of ESPResSo: How to run several sim-
ulations from a single script. How to use online-analysis (The analyze command)
with comparision to expectation values. How to get averages of the observables.
How to set/restore checkpoints (Using Checkpoints, saving configurations) includ-
ing auto-detection of previously derived parts of the simulation(s). How to create
gnuplots from within the script and combine multiple plots onto duplex pages (Sta-
tistical Analysis and Creating Gnuplots). In the end the script will provide plots
of all important quantities as .ps- and .pdf-files while compressing the data-files.
Note however, that the simulation uses the original time scale, hence it may take
quite some time to finish.

pe solution.tcl Polyelectrolyte solution under poor solvent condition. Test case for com-
parison with data produced by polysim9 from M.Deserno. Note that the equili-
bration of this system takes roughly 15000τ .

pe analyze.tcl Example for doing the analysis after the actual simulation run (offline
analysis). Calculates the integrated ion distribution P (r) for several different time
slaps, compares them and presents the final result using gnuplot to generate some
ps-files.

harmonic oscillator.tcl A chain of harmonic oscillators. This is a T = 0 simulation to
test the energy conservation.

espresso logo.tcl The ESPResSo-logo, the exploding espresso cup, has been created with
this script. It is a regular simulation of a polyelectrolyte solution. It makes use of
some nice features of the part command (see section 4.1 on page 26, namely the
capability to fix a particle in space and to apply an external force.

187

watch.tcl Script to visualize any of your productions. Use the -h option when calling
it to see how it works.

188

D. Maxwell Equations Molecular Dynamics
(MEMD)

In this chapter, we want to give a more thorough introduction to the MEMD (or
“Maggs”) algorithm for the calculation of Coulomb interactions that is implemented in
ESPResSo. For an even more detailed description, we refer to the publications [32, 36].
The method is intimately related to the Car–Parrinello approach, while being equivalent
to solving Maxwell’s equations with freely adjustable speed of light.

D.1. Equations of motion

Denoting the particle masses with mi, their charges with qi, their coordinates and mo-
mentum with ~ri and ~pi respectively, the interparticle potential (of non-electromagnetic
type) with U , for the coupled system of charges and fields we write the following equa-
tions of motion

~̇ri =
1

mi
~pi (D.1)

~̇pi = −∂U
∂~ri

+ qi ~E(~ri)−
ζ

mi
~pi + ~fi (D.2)

~̇A = − ~E (D.3)

~̇E = c2~∇×
(
~∇× ~A

)
− 1

ε0
~j, (D.4)

where ε0 is the vacuum dielectric constant, c the speed of light, ~A the vector-potential,
~E the electric field, ~j the current density; ζ is the particle friction constant, and ~fi is a
random force satisfying the standard fluctuation-dissipation theorem:

〈
fαi (t)fβj (t′)

〉
= 2ζkBTδijδαβδ(t− t′), (D.5)

where α and β denote Cartesian indices.

If we introduce the vector ~B = ∇× A the system of equations can be rewritten in a
form similar to the usual Maxwell equations. Currently in ESPResSo the version with ~B
and ~E is implemented.

189

D.2. Discretization

For implementation on the computer, the equations need to be discretized with respect
to both space and time.We consider a domain of physical space as being an affine space
and divide it into subdomains of contiguous cells of cubic shape. The charges live on
the vertices of our lattice which has the spacing a. The electric fields E(l) and vector
potentials A(l) live on the edges or links and are aligned with them. We need also the
operator ∇ × . It gives the vector ~B, which lives on the faces of the cube or on the
plaquettes, Fig. D.1.

Figure D.1.: Spatial elements of a cell complex

In the implementation of the algorithm we assume that particles with masses mi and
charges qi live in the continuum (off–lattice approach). The charges are interpolated on
the lattice with grid spacing a using a linear interpolation scheme.

D.3. Initialization of the algorithm

The algorithm as it is implemented only calculates stepwise time updates of the exact
field solution. Therefore in order to start the simulation for the given random distribution
of charges we have to calculate the initial electrostatic field, i. e. the exact solution of
the electrostatic problem. We find a particular solution of Gauss’ law as the result of
the following recursive procedure (see Fig. D.2):

1. The charge in the plane z = zplane is

qplane =
1

Nz

∑
i

q(~ri)δ(zi − zplane), (D.6)

Nz is the number of charges in plane z = zplane. Update the z-field according to
the formula

E2
z = E1

z +
qplane

ε0a2
; (D.7)

190

2. Subtract the charge qplane from the each charge on sites of zplane. The charge of
the wire y = ywire, z = zplane is

qwire =
1

Ny

∑
i

q(~ri)δ(zi − zplane)δ(yi − ywire), (D.8)

Ny now meaning the number of charges in the wire. Update y-field

E2
y = E1

y +
qwire

ε0a2
; (D.9)

3. Subtract the charge qwire from the each charge on the sites of (ywire, zplane). Update
x field

E2
x = E1

x +
qvertex

ε0a2
(D.10)

This scheme is repeated until the fields are completely relaxed (i. e. the energy is
minimized). During repetition, the spatial dimensions are permutated to avoid a drift
in one direction.

Figure D.2.: Recursive solution of Gauss’ law

D.4. Time integrator

For the time discretization we have adopted the elegant solution which was found by
Rottler and Maggs [32] and allows to conserve both time–reversibility and phase–space
volume conservation:

1. Update the particle momenta by half a time step.

191

2. Update the ~B field by half a time step.

3. Update the particle positions in x direction by half a time step.

4. Update the electric field in x direction by half a time step.

5. Update the particle positions in y direction by half a time step.

6. Update the electric field in y direction by half a time step.

7. Update the particle positions in z direction by half a time step.

8. Update the electric field in z direction by a full time step.

9. Update the particle positions in z direction by half a time step.

10. Update the electric field in y direction by half a time step.

11. Update the particle positions in y direction by half a time step.

12. Update the electric field in x direction by half a time step.

13. Update the particle positions in x direction by half a time step.

14. Update the ~B field by half a time step.

15. Update the particle momenta by half a time step.

D.5. Self–energy

The interpolation of the charges onto the lattice gives rise to the artificial force exerted
on the particle by its own field. In order to cure this remedy, the direct subtraction of
the self–energy is introduced.

For the interpolated charge cloud the self–energy can be directly calculated. For the
simple cubic lattice in three dimensions the linear interpolation will give 8 charges which
are placed at the corners of the cube with edge length a (see Fig. D.3).

1
q

2
q

a

q

q

q q

q
3 4

5
q

6

7 8

Figure D.3.: Linear interpolation scheme

192

Therefore in our case the self-energy is a symmetric bilinear form defined by the
matrix {αij}, the elements of which do not depend on the position of the charge. In our
algorithm the values of the coefficients are

αij =
1

4aε0L3

∑
~k

cos~k(~Rı − ~R)∑3
ı=1(1− cos~k~aı)

(D.11)

where L is the number of lattice points per dimension, ~Ri coordinates of the interpo-
lated charges and ~k the wave vector. Those values are calculated during the initialization
step and are used in the calculation of the self-force. The value of the self-force which
has to be subtracted from the overall forces is given by the following ansatz

~Fself = −
∂Uself
∂~r

= −
∑
i

∑
j

αij

[
qi
∂qj
∂~r

+ qj
∂qi
∂~r

]
. (D.12)

D.6. For which systems to use the algorithm

Although it is not very well known by now, this algorithm is a promising alternative to
the often used Ewald-based methods. The main advantages and disadvantages shall be
named here. However, it is still best to understand the concept of the algorithm and
figure out for yourself, if it may be an option.

- The fields are not calculated for an arbitrary charge distribution, but updated
from the last solution. Therefore, particles should not move too much between
timesteps (less than a lattice cube).

- No procedure for error tuning yet. You have to adjust the parameters and deter-
mine the error yourself.

- Only 3D periodic systems are possible for now.

- With the given interpolation scheme, the short-range part of the potential is highy
underestimated when two particles are in the same lattice cube!

- The initialization routine scales with O(N3) and takes a long time for larger (and
also inhomogenous) systems.

+ The algorithm is a local update scheme and spatially varying properties can be
applied (in the future).

+ Because of the locality, the algorithm itself scales O(N) and has a big advantage
in speed for larger systems.

+ Because of the locality, it is highly parallelized.

+ It is fast.

193

The last item is of course dependent on the system properties. But if the charges are
evenly distributed and the system is not too sparse, this algorithm outperforms P3M
easily. Especially for systems with more than 1000 charges.

Of course, if the system is not dense enough, one will have to set the lattice spacing
in a way to avoid several particles in one cell and the mesh will be very fine for not so
many charges. Also, if you have lots of charges but your simulation should only run for
a short time, the initialization scheme takes too long in comparison.

But, if you have dense systems with more than 1000 charges or simulations that run
for many timesteps, this method is definitely an option.

194

E. The MMM family of algorithms

E.1. Introduction

In the MMM family of algorithms for the electrostatic interaction, a convergence factor
approach to tackle the conditionally convergent Coulomb sum is used (even the authors
of the original MMM method have no idea what this acronym stands for). Instead
of defining the summation order, one multiplies each summand by a continuous factor
c(β, rij , nklm) such that the sum is absolutely convergent for β > 0, but c(0, ., .) = 1. The
energy is then defined as the limit β → 0 of the sum, i. e. β is an artificial convergence
parameter. For a convergence factor of e−βn

2
klm the limit is the same as the spherical

limit, and one can derive the classical Ewald method quite conveniently through this
approach [45]. To derive the formulas for MMM, one has to use a different convergence
factor, namely e−β|rij+nklm|, which defines the alternative energy

Ẽ =
1

2
lim
β→0

∑
k,l,m

N∑
i,j=1

′
qiqje

−β|pij+nklm|

|pij + nklm|
=:

1

2
lim
β→0

N∑
i,j=1

qiqjφβ(xij , yij , zij).

φβ is given by φβ(x, y, z) = φ̃β(x, y, z) + e−βr

r for (x, y, z) 6= 0 and φβ(0, 0, 0) =

φ̃β(0, 0, 0), where

φ̃β(x, y, z) =
∑

(k,l,m) 6=0

e−βrklm

rklm
.

The limit Ẽ exists, but differs for three dimensionally periodic systems by some multi-
ple of the square of the dipole moment from the spherical limit as obtained by the Ewald
summation[45]. From the physical point of view the Coulomb interaction is replaced by
a screened Coulomb interaction with screening length 1/β. Ẽ is then the energy in the
limit of infinite screening length. But because of the conditional convergence of the elec-
trostatic sum, this is not necessarily the same as the energy of an unscreened system.
Since the difference to the Ewald methods only depends on the dipole moment of the
system, the correction can be calculated easily in linear time and can be ignored with
respect to accuracy as well as to computation time.

For one or two dimensionally systems, however, Ẽ = E, i.e. the convergence factor
approach equals the spherical summation limit of the Ewald sum, and MMM1D and
MMM2D do not require a dipole correction.

Starting from this convergence factor approach, Strebel constructed a method of com-
putational order O(N logN), which is called MMM [48]. The favourable scaling is ob-
tained, very much like in the Ewald case, by technical tricks in the calculation of the far

195

formula. The far formula has a product decomposition and can be evaluated hierarchi-
cally similarly to the fast multipole methods.

For particles sufficiently separated in the z-axis one can Fourier transform the potential
along both x and y. We obtain the far formula as

φ(x, y, z) = uxuy
∑
p,q 6=0

e2πfpqz + e2πfpq(λz−z)

fpq
(
e2πfpqλz − 1

) e2πiuyqye2πiuxpx + 2πuxuy

(
uzz

2 − z +
λz
6

)
.

where λx,y,z are the box dimensions, fpq =
√

(uxp)2 + (uyq)2, fp = uxp, fq =
uxq, ωp = 2πuxp and ωq = 2πuyq. The advantage of this formula is that it allows for a
product decomposition into components of the particles. For example

e2πfpqz = e2πfpq(zi−zj) = e2πfpqzie−2πfpqzj

etc. Therefore one just has to calculate the sum over all these exponentials on the
left side and on the right side and multiply them together, which can be done in O(N)
computation time. As can be seen easily, the convergence of the series is excellent as
long as z is sufficiently large. By symmetry one can choose the coordinate with the
largest distance as z to optimise the convergence. Similar to the Lekner sum, we need a
different formula if all coordinates are small, i. e. for particles close to each other. For
sufficiently small uyρ and uxx we obtain the near formula as

φ̃(x, y, z) = 2uxuy
∑
p,q>0

cosh(2πfpqz)

fpq(e2πfpqλz−1)
e2πiuyqye2πiuxpx+

4ux
∑
l,p>0

(K0(2πuxpρl) +KN (2πuxpρ−l)) cos(2πuxpx)−

2ux
∑
n≥1

b2n
2n(2n)!<

(
(2πuy(z + iy))2n

)
+

ux
∑
n≥0

(
−1

2
n

)
(ψ(2n)(1+uxx)+ψ(2n)(1−uxx))

(2n)! ρ2n−

2 log(4π).

Note that this time we calculate φ̃ instead of φ, i. e. we omit the contribution of the
primary simulation box. This is very convenient as it includes the case of self energy
and makes φ̃ a smooth function. To obtain φ one has to add the 1/r contribution of the
primary box. The self energy is given by

φ̃(0, 0, 0) = 2uxuy
∑
p,q>0

1

fpq
(
e2πfpqλz − 1

)+8ux
∑
l,p>0

KN (2πuxλypl)+2uxψ
(0)(1)−2 log(4π).

Both the near and far formula are derived using the same convergence factor approach,
and consequently the same singularity in β is obtained. This is important since otherwise
the charge neutrality argument does not hold.

To obtain the O(N logN) scaling, some algorithm tricks are needed, which are not
used in MMM1D, MMM2D or ELC and are therefore not discussed here. For details,
see Strebel [48]. MMM is not implemented in ESPResSo.

196

E.2. MMM2D

In the case of periodicity only in the x and y directions, the far formula looks like

φ(x, y, z) = 4uxuy
∑

p,q>0
e−2πfpq |z|

fpq
cos(ωpx) cos(ωqy)+

2uxuy

(∑
q>0

e−2πfq |z|

fq
cos(ωqy) +

∑
p>0

e−2πfp|z|

fp
cos(ωpx)

)
−

2πuxuy|z|
,

and the near formula is

φ̃(x, y, z) = 4ux
∑

l,p>0 (K0(ωpρl) +K0(ωpρ−l)) cos(ωpx)−
2ux

∑
n≥1

b2n
2n(2n)!<

(
(2πuy(z + iy))2n

)
+
∑Nψ−1

k=1

(
1
rk

+ 1
r−k

)
−

ux
∑

n≥0

(
−1

2
n

)
(ψ(2n)(Nψ+uxx)+ψ(2n)(Nψ−uxx))

(2n)! (uxρ)2n−

2ux log
(

4π
uy
ux

)
.

As said before, the energy obtained from these potentials is equal to the electrostatic
energy obtained by the spherical summation limit. The deeper reason for this is that in
some sense the electrostatic sum is absolutely convergent [4].

The near formula is used for particles with a small distance along the z axis, for
all other particles the far formula is used. Below is shown, that the far formula can
be evaluated much more efficiently, however, its convergence breaks down for small z
distance. To efficiently implement MMM2D, the layered cell system is required, which
splits up the system in equally sized gaps along the z axis. The interaction of all particles
in a layer S with all particles in the layers S-1,S,S+1 is calculated using the near formula,
for the particles in layers 1, . . . , S−2, and in layers S+2, . . . , N , the far formula is used.

The implementation of the near formula is relatively straight forward and can be
treated as any short ranged force is treated using the link cell algorithm, here in the
layered variant. The special functions in the formula are somewhat demanding, but
for the polygamma functions Taylor series can be achieved, which are implemented in
mmm-common.h. The Bessel functions are calculated using a Chebychev series.

The treatment of the far formula is algorithmically more complicated. For a particle
i in layer Si, the formula can product decomposed, as in

∑
j∈IS ,S<Si−1 qiqj

e−2πfpq |zi−zj |

fpq
cos(ωp(xi − xj)) cos(ωq(yi − yj)) =

qi
e−2πfpqzi

fpq
cos(ωpxi) cos(ωqyi)

∑
j∈IS ,S<Si−1 qje

2πfpqzj cos(ωpxj) cos(ωqyj)+

qi
e−2πfpqzi

fpq
cos(ωpxi) sin(ωqyi)

∑
j∈IS ,S<Si−1 qje

2πfpqzj cos(ωpxj) sin(ωqyj)+

qi
e−2πfpqzi

fpq
sin(ωpxi) cos(ωqyi)

∑
j∈IS ,S<Si−1 qje

2πfpqzj sin(ωpxj) cos(ωqyj)+

qi
e−2πfpqzi

fpq
sin(ωpxi) sin(ωqyi)

∑
j∈IS ,S<Si−1 qje

2πfpqzj sin(ωpxj) sin(ωqyj).

197

This representation has the advantage, that the contributions of the two particles are
decoupled. For all particles j only the eight terms

ξ
(±,s/c,s/c)
j = qje

±2πfpqzj sin / cos(ωpxj) sin / cos(ωqyj)

are needed. The upper index describes the sign of the exponential term and whether
sine or cosine is used for xj and yj in the obvious way. These terms can be used for all
expressions on the right hand side of the product decomposition. Moreover it is easy to
see from the addition theorem for the sine function that these terms also can be used to
calculate the force information up to simple prefactors that depend only on p and q.

Every processor starts with the calculation of the terms ξ
(±,s/c,s/c)
j and adds them up

in each layer, so that one obtains

Ξ(±,s/c,s/c)
s =

∑
j∈Ss

ξ
(±,s/c,s/c)
j .

Now we calculate

Ξ(l,s/c,s/c)
s =

∑
t<s−1

Ξ
(+,s/c,s/c)
t

and

Ξ(h,s/c,s/c)
s =

∑
t>s+1

Ξ
(−,s/c,s/c)
t ,

which are needed for the evaluation of the product decomposition. While the bottom

processor can calculate Ξ
(l,s/c,s/c)
s directly, the other processors are dependent on its

results. Therefore the bottom processor starts with the calculation of its Ξ
(l,s/c,s/c)
s and

sends up Ξ
(l,s/c,s/c)
s and Ξ

(+,s/c,s/c)
s of its top layer s to the next processor dealing with

the layers above. Simultaneously the top processor starts with the calculation of the

Ξ
(h,s/c,s/c)
s and sends them down. After the communicated has been completed, every

processor can use the Ξ
(l/h,s/c,s/c)
j and the ξ

(±,s/c,s/c)
j to calculate the force rsp. energy

contributions for its particles.
In pseudo code, the far formula algorithm looks like:

1. for each layer s = 1, . . . , S

a) Ξ
(±,s/c,s/c)
s = 0

b) for each particle j in layer s

i. calculate ξ
(±,s/c,s/c)
j

ii. Ξ
(±,s/c,s/c)
s + = ξ

(±,s/c,s/c)
j

2. Ξ
(l,s/c,s/c)
3 = Ξ

(+,s/c,s/c)
1

3. for each layer s = 4, . . . , S

198

a) Ξ
(l,s/c,s/c)
s = Ξ

(l,s/c,s/c)
s−1 + Ξ

(+,s/c,s/c)
s−2

4. Ξ
(l,s/c,s/c)
S−2 = Ξ

(−,s/c,s/c)
S

5. for each layer s = (S − 3), ..., 1

a) Ξ
(l,s/c,s/c)
s = Ξ

(l,s/c,s/c)
s+1 + Ξ

(−,s/c,s/c)
s+2

6. for each layer s = 1, ..., S

a) for each particle j in layer s

i. calculate particle interaction from ξ
(+,s/c,s/c)
j Ξ

(l,s/c,s/c)
s and ξ

(−,s/c,s/c)
j Ξ

(h,s/c,s/c)
s

For further details, see Arnold and Holm [4, 5], Arnold et al. [6, 7].

E.2.1. Dielectric contrast

A dielectric contrast at the lower and/or upper simulation box boundary can be included
comparatively easy by using image charges. Apart from the images of the lowest and
topmost layer, the image charges are far enough to be treated by the far formula, and
can be included as starting points in the calculation of the Ξ terms. The remaining
particles from the lowest and topmost layer are treated by direct summation of the near
formula.

This means, that in addition to the algorithm above, one has to only a few things:
during the calculation of the particle and cell blocks ξ and Ξ, one additionally calculates
the contributions of the image charges and puts them either in a separate array or, for
the boundary layers, into two extra ξ cell blocks outside the simulation box. The entries
in the separate array are then added up over all processors and stored in the Ξ-terms of
the lowest/topmost layer. This are all modifications necessary for the far formula part.
In addition to the far formula part, there is an additional loop over the particles at the
boundary to directly calculate their interactions with their images. For details, refer to
Tyagi et al. [52].

E.3. MMM1D

In one dimensionally periodic systems with z being the periodic coordinate, the far
formula looks like

φ(ρ, z) = 4uz
∑

p 6=0K0(ωρ) cos(ωz)− 2uz log(ρ
2λz

)− 2uzγ

Fρ(ρ, z) = 8πu2
z

∑
p 6=0 pK1(ωρ) cos(ωz) + 2uz

ρ

Fz(ρ, z) = 8πu2
z

∑
p 6=0 pK0(ωρ) sin(ωz),

the near formula is

199

φ̃(ρ, z) = −uz
∑

n≥0

(
−1

2
n

)
(ψ(2n)(Nψ+uzz)+ψ(2n)(Nψ−uzz))

(2n)! (uzρ)2n − 2uzγ+∑Nψ−1
k=1

(
1
rk

+ 1
r−k

)
F̃ρ(ρ, z) = −u3

z

∑
n≥0

(
−1

2
n

)
(ψ(2n)(Nψ+uzz)+ψ(2n)(Nψ−uzz))

(2n)! (uzρ)2n−1+∑Nψ−1
k=1

(
ρ
r3
k

+ ρ
r3
−k

)
F̃z(ρ, z) = −u2

z

∑
n≥0

(
−1

2
n

)
(ψ(2n+1)(Nψ+uzz)+ψ(2n+1)(Nψ−uzz))

(2n)! (uzρ)2n+∑Nψ−1
k=1

(
z+kλz
r3
k

+ z−kλz
r3
−k

)
,

where ρ denotes the xy-distance of the particles. As for the two dimensional periodic
case, the obtained energy is equal to the one dimensional Ewald sum. Algorithmically,
MMM1D is uninteresting, since neither the near nor far formula allow a product de-
composition or similar tricks. MMM1D has to be implemented as a simple NxN loop.
However, the formulas can be evaluated efficiently, so that MMM1D can still be used
reasonably for up to 400 particles on a single processor [3].

E.4. ELC

The ELC method differs from the other MMM algorithms in that it is not an algorithm
for the calculation of the electrostatic interaction, but rather represents a correction term
which allows to use any method for threedimensionally periodic systems with spherical
summation order for twodimensional periodicity. The basic idea is to expand the two
dimensional slab system of height h in the non-periodic z-coordinate to a system with
periodicity in all three dimensions, with a period of λz > h, which leaves an empty gap
of height δ = λz − h above the particles in the simulation box.

Since the electrostatic potential is only finite if the total system is charge neutral, the
additional image layers (those layers above or below the original slab system) are charge
neutral, too. Now let us consider the n-th image layer which has an offset of nλz to the
original layer. If nλz is large enough, each particle of charge q j at position (xj , yj , zj +
nλz) and its replicas in the xy-plane can be viewed as constituting a homogeneous
charged sheet of charge density σj =

qj
λxλy

. The potential of such a charged sheet at

distance z is 2πσj |z|. Now we consider the contribution from a pair of image layers
located at ±nλz, n¿0 to the energy of a charge q i at position (xi, yi, zi) in the central
layer. Since |zj − zi| < nλz, we have |zj − zi +nλz| = nλz + zj − zi and |zj − zi−nλz| =
nλz − zj + zi, and hence the interaction energy from those two image layers with the
charge qi vanishes by charge neutrality:

2πqi

N∑
j=1

σj(|zj − zi + nλz|+ |zj − zi − nλz|) = 4πqinλz

N∑
j=1

σj = 0.

200

The only errors occurring are those coming from the approximation of assuming ho-
mogeneously charged, infinite sheets instead of discrete charges. This assumption should
become better when increasing the distance nλz from the central layer.

However, in a naive implementation, even large gap sizes will result in large errors.
This is due to the order of summation for the standard Ewald sum, which is spherical,
while the above approach orders the cells in layers, called slab–wise summation. Smith
has shown that by adding to the Ewald energy the term

Ec = 2πM2
z −

2πM2

3
,

where M is the total dipole moment, one obtains the result of a slab–wise summation
instead of the spherical limit [45]. Although this is a major change in the summation
order, the difference is a very simple term. In fact, Smith shows that changes of the
summation order always result in a difference that depends only on the total dipole
moment.

Using the far formula of MMM2D, one can calculate the contributions of the addi-
tional layers up to arbitrarily precision, even for small gap sizes. This method is called
electrostatic layer correction, ELC. The advantage of this approach is that for the image
layers, z is necessarily large enough, so that all interactions can be represented using the
product decomposition. This allows for an order N evaluation of the ELC term.

The electrostatic layer correction term is given by

Elc =

N∑
i,j=1

qiqjψ(pi − pj),

where

ψ(x, y, z) = 4uxuy
∑

p,q>0
cosh(2πfpqz)

fpq(e
2πfpqλz−1)

cos(ωpx) cos(ωqy)+

2uxuy
∑

p>0
cosh(2πfpz)

fp(e2πfpλz−1)
cos(ωpx)+

2uxuy
∑

q>0
cosh(2πfqz)

fq(e
2πfqλz−1)

cos(ωqy).

The implementation is very similar to MMM2d, except that the separation between
slices closeby, and above and below is not necessary.

E.5. Errors

Common to all algorithms of the MMM family is that accuracy is cheap with respect to
computation time. More precisely, the maximal pairwise error, i.e. the maximal error
of the ψ expression, decreases exponentially with the cutoffs. In turn, the computation
time grows logarithmically with the accuracy. This is quite in contrast to the Ewald
methods, for which decreasing the error bound can lead to excessive computation time.
For example, P3M cannot reach precisions above 10−5 in general. The precise form of
the error estimates is of little importance here, for details see Arnold et al. [6, 7].

201

One important aspect is that the error estimates are also exponential in the non-
periodic coordinate. Since the number of closeby and far away particles is different for
particles near the border and in the center of the system, the error distribution is highly
non–homogenous. This is unproblematic as long as the maximal error is really much
smaller than the thermal energy. However, one cannot interpret the error simply as an
additional error source.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 1 2 3 4 5 6 7 8 9

∆
F

∞

z

Figure E.1.: Error distribution of the ELC method.

Figure E.1 shows the error distribution of the ELC method for a gap size of 10% of
the total system height. For MMM2D and MMM1D the error distribution is less ho-
mogenous, however, also here it is always better to have some extra precision, especially
since it is computationally cheap.

202

F. Bibliography

[1] Andersen. Molecular-Dynamics Simulations At Constant Pressure And/Or Tem-
perature. J. Chem. Phys, 72(4):2384–2393, 1980. ISSN 0021-9606. 6.2.3

[2] Hans C. Andersen. Rattle: A ”velocity” version of the shake algorithm for molecular
dynamics calculations. J. Comp. Phys., 51:24–34, 1983. 4.2.1, 5.3.4

[3] A. Arnold and C. Holm. MMM1D: A method for calculating electrostatic interac-
tions in 1D periodic geometries. J. Chem. Phys., 123(12):144103, September 2005.
E.3

[4] Axel Arnold and Christian Holm. MMM2D: A fast and accurate summation
methodlimnb for electrostatic interactions in 2d slab geometries. Comput. Phys.
Commun., 148(3):327–348, 1 November 2002. E.2, E.2

[5] Axel Arnold and Christian Holm. A novel method for calculating electrostatic
interactions in 2D periodic slab geometries. Chem. Phys. Lett., 354:324–330, 2002.
E.2

[6] Axel Arnold, Jason de Joannis, and Christian Holm. Electrostatics in Periodic Slab
Geometries I. J. Chem. Phys., 117:2496–2502, 2002. 5.6.6, E.2, E.5

[7] Axel Arnold, Jason de Joannis, and Christian Holm. Electrostatics in Periodic Slab
Geometries II. J. Chem. Phys., 117:2503–2512, 2002. E.2, E.5

[8] Axel Arnold, Olaf Lenz, Stefan Kesselheim, Rudolf Weeber, Florian Fahrenberger,
Dominic Roehm, Peter Kosovan, and Christian Holm. ESPResSo 3.1 – molecu-
lar dynamics software for coarse-grained models. In Michael Griebel, Christian
Rieger, and Marc Alexander Schweitzer, editors, Proceedings of the Sixth Interna-
tional Workshop on Meshfree Methods for Partial Differential Equations, Lecture
Notes in Computational Science and Engineering. Springer, Berlin, Germany, sub-
mitted. 5.6.7

[9] V. Ballenegger, A. Arnold, and J. J. Cerda. Simulations of non-neutral slab sys-
tems with long-range electrostatic interactions in two-dimensional periodic bound-
ary conditions. J. Chem. Phys., 131(9):094107, 2009. doi: 10.1063/1.3216473. URL
http://link.aip.org/link/?JCP/131/094107/1. 5.6.6

[10] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R.
Haak. Molecular dynamics with coupling to a heat bath. J. Chem. Phys., 81:
3684–3690, 1984. 6.2.1

203

http://link.aip.org/link/?JCP/131/094107/1

[11] A. Brodka. Ewald summation method with electrostatic layer correction for in-
teractions of point dipoles in slab geometry. Chem. Phys. Lett., 400:62–67, 2004.
5.7.2

[12] Juan J. Cerda, V. Ballenegger, O. Lenz, and C.Holm. P3M algorithm for dipolar
interactions. J. Chem. Phys., 129:234104, 2008. 5.6.1, 5.7.1, 5.7.1

[13] M. Deserno. Counterion condensation for rigid linear polyelectrolytes. PhD thesis,
Universität Mainz, 2000. 5.6.1, 5.7.1

[14] M. Deserno and C. Holm. How to mesh up Ewald sums. i. J. Chem. Phys., 109:
7678, 1998. 5.6.1, 5.7.1

[15] M. Deserno and C. Holm. How to mesh up Ewald sums. ii. J. Chem. Phys., 109:
7694, 1998. 5.6.1, 5.7.1

[16] M. Deserno, C. Holm, and H. J. Limbach. Molecular Dynamics on Parallel Com-
puters, chapter How to mesh up Ewald sums. World Scientific, Singapore, 2000.
5.6.1, 5.7.1

[17] M Doi and S F Edwards. The theory of polymer dynamics. Oxford Science Publi-
cations, 1986. 8.2.1

[18] P.P. Ewald. Die berechnung optischer und elektrostatischer gitterpotentiale. Ann.
Phys., 64:253–287, 1921. 5.6.1, 5.7.1

[19] Daan Frenkel and Berend Smit. Understanding Molecular Simulation. Academic
Press, San Diego, second edition, 2002. 1.1, 9.2.6

[20] Gary S. Grest and Kurt Kremer. Molecular dynamics simulation for polymers in
the presence of a heat bath. Phys. Rev. A, 33(5):3628–31, 1986. 2.3, 6.2.1

[21] Owen A. Hickey, Christian Holm, James L. Harden, and Gary W. Slater. Implicit
Method for Simulating Electrohydrodynamics of Polyelectrolytes. Phys. Rev. Lett.,
105(14), SEP 29 2010. doi: {10.1103/PhysRevLett.105.148301}. 12.6

[22] R. W. Hockney and J. W. Eastwood. Computer Simulation Using Particles. IOP,
1988. 5.6.1, 5.6.1, 5.7.1

[23] F. Höfling, Karl-Ulrich Bamberg, and Thomas Franosch. Anomalous transport
resolved in space and time by fluorescence correlation spectroscopy. Soft Matter, 7:
1358, 2011. 9.2.2

[24] W. Humphrey, A. Dalke, and K. Schulten. VMD: Visual molecular dynamics. J.
Mol. Graphics, 14:33–38, 1996. 10.3

[25] C. Junghans and S. Poblete. A reference implementation of the adaptive resolution
scheme in ESPResSo. Comp. Phys. Comm., 181(8):1449–1454, 2010. 6.5

204

[26] C. Junghans, M. Praprotnik, and K. Kremer. Transport properties controlled by a
thermostat: An extended dissipative particle dynamics thermostat. Soft Matter, 4:
156, 2008. 6.2.2

[27] Stefan Kesselheim, Marcello Sega, and Christian Holm. Applying to dna
translocation: Effect of dielectric boundaries. Computer Physics Com-
munications, 182(1):33 – 35, 2011. ISSN 0010-4655. doi: 10.1016/j.
cpc.2010.08.014. URL http://www.sciencedirect.com/science/article/pii/

S001046551000305X. ¡ce:title¿Computer Physics Communications Special Edi-
tion for Conference on Computational Physics Kaohsiung, Taiwan, Dec 15-19,
2009¡/ce:title¿. 5.6.7

[28] Jiri Kolafa and John W. Perram. Cutoff errors in the ewald summation formulae
for point charge systems. Molecular Simulation, 9(5):351–368, 1992. 5.6.1, 5.6.1,
5.7.1

[29] K. Kremer and G. S. Grest. Dynamics of entangled linear polymer melts: A
molecular-dynamics simulation. J. Chem. Phys., 92:5057, 1990. C

[30] H. J. Limbach and C. Holm. Single-chain properties of polyelectrolytes in poor
solvent. J. Phys. Chem. B, 107(32):8041–8055, 2003. 8.1.18

[31] D Magatti and F Ferri. Fast multi-tau real-time software correlator for dynamic
light scattering. Applied Optics, 40(24):4011–4021, AUG 20 2001. ISSN 0003-6935.
doi: {10.1364/AO.40.004011}. 9.2.6

[32] A. C. Maggs and V. Rosseto. Local simulation algorithms for coulombic interactions.
Phys. Rev. Lett., 88:196402, 2002. 5.6.5, D, D.4

[33] Bernward A. Mann. The Swelling Behaviour of Polyelectrolyte Networks. PhD
thesis, Johannes Gutenberg-University, Mainz, Germany, December 2005. 6.2.3

[34] S. Marsili, G.F. Signorini, R. Chelli, M. Marchi, and P. Procacci. Orac: A molec-
ular dynamics simulation program to explore free energy surfaces in biomolecular
systems at the atomistic level. J. Comp. Chem., 31:1106, 2009. 7.7

[35] P. Nikunen, M. Karttunen, and I. Vattulainen. How would you integrate the equa-
tions of motion in dissipative particle dynamics simulations. Com. Phys. Comm.,
153:407, 2003. 6.2.2

[36] Igor Pasichnyk and Burkhard Dünweg. Coulomb interactions via local dynamics:
A molecular-dynamics algorithm. J. Phys.: Condens. Matter, 16(38):3999–4020,
September 2004. 5.6.5, D

[37] S. Poblete, M. Praprotnik, K. Kremer, and Luigi Delle Site. Coupling different
levels of resolution in molecular simulations. Jour. Chem. Phys., 132(11):114101,
2010. 6.5

205

http://www.sciencedirect.com/science/article/pii/S001046551000305X
http://www.sciencedirect.com/science/article/pii/S001046551000305X

[38] Matej Praprotnik, Luigi Delle Site, and Kurt Kremer. Adaptive resolution
molecular-dynamics simulation: Changing the degrees of freedom on the fly. The
Journal of Chemical Physics, 123(22):224106–14, 2005. 6.5

[39] Matej Praprotnik, Luigi Delle Site, and Kurt Kremer. Multiscale simulation of soft
matter: From scale bridging to adaptive resolution. Annual Review of Physical
Chemistry, 59(1):545–571, 2008. 6.5

[40] Jorge Ramirez, Sathish K. Sukumaran, Bart Vorselaars, and Alexei E. Likhtman.
Efficient on the fly calculation of time correlation functions in computer simulations.
J. Chem. Phys., 133(15):154103, OCT 21 2010. ISSN 0021-9606. doi: {10.1063/1.
3491098}. 9.2.2, 9.2.6, 9.2.6

[41] Michael Rubinstein and Ralph H. Colby. Polymer Physics. Oxford University Press,
Oxford, UK, 2003. 8.2.1

[42] K. Schätzel, M. Drewel, and S Stimac. Photon-correlation measurements at large
lag times - improving statistical accuracy. Journal of Modern Optics, 35(4):711–718,
APR 1988. ISSN 0950-0340. doi: {10.1080/09500348814550731}. 9.2.6

[43] Heiko Schmitz and Florian Muller-Plathe. Calculation of the lifetime of positronium
in polymers via molecular dynamics simulations. J. Chem. Phys., 112(2):1040–1045,
2000. doi: 10.1063/1.480627. URL http://link.aip.org/link/?JCP/112/1040/

1. 8.1.19

[44] J. Smiatek, M. P. Allen, and F. Schmidt. Tunable slip boundaries for coarse-grained
simulations of fluid flow. Eur. Phys. J. E, 26:115, 2008. 5.8.1

[45] E. R. Smith. Electrostatic energy in ionic crystals. Proc. R. Soc. Lond. A, 375:
475–505, 1981. E.1, E.4

[46] T. Soddemann, B. Dünweg, and K. Kremer. A generic computer model for am-
phiphilic systems. Eur. Phys. J. E, 6:409, 2001. 5.1.4, 6.3

[47] T. Soddemann, B. Dünweg, and K. Kremer. Dissipative particle dynamics: A useful
thermostat for equilibrium and nonequilibrium molecular dynamics simulations.
Phys. Rev. E, 68:046702, 2003. 6.2.2

[48] R. Strebel. Pieces of software for the Coulombic m body problem. Dissertation, ETH
Zürich, 1999. URL http://e-collection.ethbib.ethz.ch/show?type=diss&nr=

13504. E.1

[49] S. Succi. The lattice Boltzmann equation for fluid dynamics and beyond. Oxford
University Press, USA, 2001. 12.4

[50] A. P. Thompson, S. J. Plimpton, and W. Mattson. General formulation of pressure
and stress tensor for arbitrary many-body interaction potentials under periodic
boundary conditions. Journal of Chemical Physics, 131:154107, 2009. 8.1.21

206

http://link.aip.org/link/?JCP/112/1040/1
http://link.aip.org/link/?JCP/112/1040/1
http://e-collection.ethbib.ethz.ch/show?type=diss&nr=13504
http://e-collection.ethbib.ethz.ch/show?type=diss&nr=13504

[51] C. Tyagi, M. Süzen, M. Sega, M. Barbosa, S. Kantorovich, and C. Holm. An
iterative, fast, linear-scaling method for computing induced charges on arbitrary
dielectric boundaries. J. Chem. Phys., 132:154112, 2010. doi: 10.1063/1.3376011.
5.6.7

[52] S. Tyagi, A. Arnold, and C. Holm. ICMMM2D: An accurate method to include
planar dielectric interfaces via image charge summation. J. Chem. Phys., 127:
154723, 2007. E.2.1

[53] Sandeep Tyagi, Axel Arnold, and Christian Holm. Electrostatic layer correction
with image charges: A linear scaling method to treat slab 2d + h systems with
dielectric interfaces. J. Chem. Phys., 129(20):204102, 2008. 5.6.6

[54] Ulli Wolff. Monte carlo errors with less errors. Comput. Phys. Commun., 156:
143–153, 2004. 8.4, 9.2.5

207

Index

aggregation, 92
analysis, 87

aggregation, 92
bond distances internal first monomer,

99
bond lengths, 100
center of mass, 91
chains, 98
end-to-end distance of a chain, 98
energies, 94
finding holes, 93
form factor of a chain, 100
gyration tensor, 92
hydrodynamic radius of a chain, 98
internal distances within a chain, 99
local stress tensor, 96
minimal particle distance, 87
moment of inertia matrix, 91
particle distance, 87
particle distribution, 88
particles in the neighbourhood, 88
pearl-necklace structures, 92
pressure, 94
principal axis of the moment of in-

ertia, 91
radial distribution function, 100
radial distribution function g(r), 90
radius of gyration of a chain, 98
stress tensor, 95
structure factor S(q), 90
topologies, 97
van Hove autocorrelation functionG(r, t),

91
Analysis in the Core, 104
analyze (Tcl-command), 87
Anisotropic interactions, 47

blockfile (Tcl-command), 115

blocks, 117

BMHTF interaction, 45

bond distances internal first monomer,
99

bond lengths, 100

bond-angle interactions, 53

bonded interaction type id, 50

bonded interactions, 50

box_l (global variable), 68

Buckingham interaction, 46

build directory, 21

cell_grid (global variable), 68

cell_size (global variable), 68

cellsystem (Tcl-command), 74

center of mass, 91

chains, 98

change_volume (Tcl-command), 79

checkpoint_read (Tcl-command), 119

checkpoint_set (Tcl-command), 119

configuration header, 24

configure, 12, 20

configure options, 21

constraint (Tcl-command), 36

copy_particles (Tcl-command), 35

correlation (Tcl-command), 109

Correlations, 108

Coulomb interactions, 55

counterions (Tcl-command), 31

crosslink (Tcl-command), 35

DAWAANR method, 64

Debye-Hückel potential, 57

diamond (Tcl-command), 32

dielectric (Tcl-command), 62

208

Dielectric interfaces, 61, 62

dihedral interactions, 54

Dipolar interactions, 62

Directional Lennard-Jones interaction, 47

DLC method, 64

domain decomposition, 74

DPD, 66, 71

DPD interaction, 66

dpd_gamma (global variable), 68

dpd_r_cut (global variable), 68

ELC method, 60

Electrostatic interactions, 55

end-to-end distance of a chain, 98

energies, 94

energy unit, 9

features, 20, 24, 181

ADDITIONAL CHECKS, 184

ADRESS, 182

ASYNC BARRIER, 186

BMHTF NACL, 184

BOND ANGLE COSINE, 184

BOND ANGLE COSSQUARE, 184

BOND ANGLE HARMONIC, 184

BOND ANGLEDIST, 184

BOND CONSTRAINT, 182

BOND ENDANGLEDIST, 184

BOND VIRTUAL, 182

BUCKINGHAM, 184

CELL DEBUG, 185

COLLISION DETECTION, 182

COMFIXED, 182

COMFORCE, 182

COMM DEBUG, 185

CONSTRAINTS, 181

DIPOLES, 181

DPD, 183

DPD MASS LIN, 183

DPD MASS RED, 183

ELECTROSTATICS, 181

ESK DEBUG, 185

ESR DEBUG, 185

EVENT DEBUG, 185

EWALD DEBUG, 185
EXCLUSIONS, 182
EXTERNAL FORCES, 181
FENE DEBUG, 186
FFT DEBUG, 185
FORCE CORE, 186
FORCE DEBUG, 185
GAY BERNE, 183
GHOST DEBUG, 185
GHOST FORCE DEBUG, 185
GRID DEBUG, 185
HALO DEBUG, 185
HERTZIAN, 183
INTEG DEBUG, 185
INTER DPD, 183
INTER RF, 183
LATTICE DEBUG, 185
LB, 183
LB DEBUG, 186
LB ELECTROHYDRODYNAMICS,

183
LENNARD JONES, 183
LENNARD JONES GENERIC, 183
LJ ANGLE, 183
LJ DEBUG, 186
LJ WARN WHEN CLOSE, 184
LJCOS, 183
LJCOS2, 183
MAGGS DEBUG, 185
MASS, 182
MEM DEBUG, 185
METADYNAMICS, 182
MODES, 182
MOL CUT, 184
MOLFORCES, 182
MOLFORCES DEBUG, 186
MORSE, 184
MORSE DEBUG, 186
MPI CORE, 186
NEMD, 183
NO INTRA NB, 184
NPT, 183
OLD RW VERSION, 182
OLD DIHEDRAL, 184

209

ONEPART DEBUG, 186
OVERLAPPED, 182
P3M DEBUG, 185
PARTIAL PERIODIC, 181
PARTICLE DEBUG, 185
POLY DEBUG, 186
PTENSOR DEBUG, 185
RANDOM DEBUG, 185
ROTATION, 181
ROTATIONAL INERTIA, 181
SMOOTH STEP, 184
SOFT SPHERE, 184
STAT DEBUG, 186
TABULATED, 183
THERMO DEBUG, 186
THERMOSTAT IGNORE NON VIR-

TUAL, 182
TRANS DPD, 183
TUNABLE SLIP, 182
VERLET DEBUG, 185
VIRTUAL SITES COM, 182
VIRTUAL SITES DEBUG, 186
VIRTUAL SITES NO VELOCITY,

182
VIRTUAL SITES RELATIVE, 182
VIRTUAL SITES THERMOSTAT, 182

FENE bond, 50
FFTW, 10
finding holes, 93
form factor of a chain, 100

gamma (global variable), 68
Gay-Berne interaction, 49
Generic Lennard-Jones interaction, 44
global variables, 115

box_l, 68
cell_grid, 68
cell_size, 68
dpd_gamma, 68
dpd_r_cut, 68
gamma, 68
integ_switch, 68
local_box_l, 68
max_cut_bonded, 68

max_cut_nonbonded, 68

max_cut, 68

max_num_cells, 68

max_part, 68

max_range, 68

max_skin, 69

min_global_cut, 69

min_num_cells, 69

n_layers, 69

n_nodes, 69

n_part_types, 69

n_part, 69

node_grid, 69

npt_p_ext, 69

npt_p_inst, 69

nptiso_gamma0, 69

nptiso_gammav, 69

periodicity, 69

piston, 69

skin, 69

temperature, 69

thermo_switch, 69

time_step, 69

time, 69

timings, 69

transfer_rate, 69

verlet_flag, 70

verlet_reuse, 70

gyration tensor, 92

harmonic bond, 51

Hertzian interaction, 47

hydrodynamic radius of a chain, 98

ICC?, 61

iccp3m (Tcl-command), 61

icosaeder (Tcl-command), 34

IMD, 125

imd (Tcl-command), 125

Installation, 20

integ_switch (global variable), 68

integrate (Tcl-command), 79

inter (Tcl-command), 42

Interaction DPD, 72

210

interactions, 42
BMHTF, 45
bond-angle, 53
bonded, 50
Buckingham, 46
Coulomb, 55
DAWAANR method, 64
Debye-Hückel, 57
dihedral, 54
Dipolar, 62
Directional Lennard-Jones, 47
DLC method, 64
DPD, 66
ELC method, 60
Electrostatic, 55
FENE, 50
Gay-Berne, 49
Generic Lennard-Jones, 44
harmonic, 51
hertzian, 47
Lennard-Jones, 43
Lennard-Jones cosine, 44
Maggs method, 59
Magnetostatic, 62
MDDS method, 64
MEMD, 59
MMM1D, 58
MMM2D, 58
Morse, 46
non-bonded, 42
P3M, 55
rigid bond, 51
smooth-step, 45
soft-sphere, 47
subtracted Lennard-Jones, 51
tabulated, 43
tabulated bond, 52
Tunable-slip boundary interactions,

65
interactive mode, 24
internal distances within a chain, 99
invalidate_system (Tcl-command), 80

label:DPDthermostat, 71

lb (Tcl-command), 137

length unit, 9

Lennard-Jones cosine interaction, 44

Lennard-Jones interaction, 43

local stress tensor, 96

local_box_l (global variable), 68

Maggs method, 59

Magnetostatic interactions, 62

make, 12

max_cut (global variable), 68

max_cut_bonded (global variable), 68

max_cut_nonbonded (global variable), 68

max_num_cells (global variable), 68

max_part (global variable), 68

max_range (global variable), 68

max_skin (global variable), 69

Maxwell Equation Molecular Dynamics,
59

MDDS method, 64

MEMD, 59

metadynamics (Tcl-command), 85

min_global_cut (global variable), 69

min_num_cells (global variable), 69

minimal particle distance, 87

MMM1D method, 58

MMM2D method, 58

moment of inertia matrix, 91

momentum exchange method, 74

Morse interaction, 46

MPI, 10

Multiple tau correlator, 113

myconfig.h, 24

n_layers (global variable), 69

n_nodes (global variable), 69

n_part (global variable), 69

n_part_types (global variable), 69

NEMD, 73

nemd (Tcl-command), 73

node_grid (global variable), 69

Non-bonded interactions, 42

npt_p_ext (global variable), 69

npt_p_inst (global variable), 69

211

nptiso_gamma0 (global variable), 69
nptiso_gammav (global variable), 69

observable (Tcl-command), 104
Observables, 104

P3M method, 55
parallel_tempering (Tcl-command), 81
part (Tcl-command), 26
particle distance, 87
particle distribution, 88
particles in the neighbourhood, 88
pearl-necklace structures, 92
periodicity (global variable), 69
physical units, 9
piston (global variable), 69
polymer (Tcl-command), 30
prepare_vmd_connection (Tcl-command),

126
pressure, 94
principal axis of the moment of inertia,

91

quick reference of Tcl-commands, 171

radial distribution function, 100
radial distribution function g(r), 90
radius of gyration of a chain, 98
random number generators, 116
random seed, 116
Rattle Shake algorithm, 51
requirements, 10
rigid bond, 51

salt (Tcl-command), 32
setmd (Tcl-command), 68
shear-rate method, 74
skin (global variable), 69
smooth-step interaction, 45
soft-sphere interaction, 47
source directory, 21
stop_particles (Tcl-command), 80
stopParticles (Tcl-command), 80
stored configurations, 101, 117
stress tensor, 95

structure factor S(q), 90
subtracted Lennard-Jones bond, 51

tabulated bond interactions, 52
tabulated interaction, 43
Tcl global variables, 116
Tcl-commands

analyze, 87
blockfile, 115
cellsystem, 74
change_volume, 79
checkpoint_read, 119
checkpoint_set, 119
constraint, 36
copy_particles, 35
correlation, 109
counterions, 31
crosslink, 35
diamond, 32
dielectric, 62
iccp3m, 61
icosaeder, 34
imd, 125
integrate, 79
inter, 42
invalidate_system, 80
lb, 137
metadynamics, 85
nemd, 73
observable, 104
parallel_tempering, 81
part, 26
polymer, 30
prepare_vmd_connection, 126
salt, 32
setmd, 68
stop_particles, 80
stopParticles, 80
thermostat, 70
uwerr, 103
velocities, 80
writepdb, 124
writepdbfoldchains, 124
writepdbfoldtopo, 124

212

writepsf, 124
writevcf, 123
writevsf, 122

Tcl/Tk, 10
temperature (global variable), 69
thermo_switch (global variable), 69
thermostat (Tcl-command), 70
time (global variable), 69
time unit, 9
time_step (global variable), 69
timings (global variable), 69
topologies, 97
transfer_rate (global variable), 69
Tunable-slip boundary interaction, 65

units, 9
uwerr (Tcl-command), 103

van Hove autocorrelation functionG(r, t),
91

vcf, 121
velocities (Tcl-command), 80
verlet_flag (global variable), 70
verlet_reuse (global variable), 70
virtual sites, 38
vsf, 121
vtf, 121

whitespace, 115
writepdb (Tcl-command), 124
writepdbfoldchains (Tcl-command), 124
writepdbfoldtopo (Tcl-command), 124
writepsf (Tcl-command), 124
writevcf (Tcl-command), 123
writevsf (Tcl-command), 122

213

	Contents
	Introduction
	Guiding principles
	Available simulation methods
	Basic program structure
	On units
	Requirements
	Syntax description

	First steps
	Quick installation
	Running ESPResSo
	Creating the first simulation script
	tutorial.tcl

	Getting, compiling and running ESPResSo
	Running configure
	make: Compiling, testing and installing ESPResSo
	Running ESPResSo
	myconfig.h: Activating and deactivating features

	Setting up particles
	part: Creating single particles
	Creating groups of particle
	constraint: Setting up constraints
	Virtual sites

	Setting up interactions
	Isotropic non-bonded interactions
	Anisotropic non-bonded interactions
	Bonded interactions
	Bond-angle interactions
	Dihedral interactions
	Coulomb interaction
	Dipolar interaction
	Special interaction commands

	Setting up the system
	setmd: Setting global variables.
	thermostat: Setting up the thermostat
	nemd: Setting up non-equilibrium MD
	cellsystem: Setting up the cell system
	AdResS
	CUDA
	Creating bonds when particles collide

	Running the simulation
	integrate: Running the simulation
	change_volume: Changing the box volume
	Stopping particles
	velocities: Setting the velocities
	invalidate_system
	Parallel tempering
	Metadynamics

	Analysis in Tcl
	Available observables
	Analyzing groups of particles (molecules)
	Storing configurations
	uwerr: Computing statistical errors in time series

	Analysis in the core
	Observables
	Correlations

	Input / Output
	blockfile: Using the structured file format
	Checkpointing (deprecated)
	Writing VTF files
	Writing PDB/PSF files
	Online-visualisation with VMD
	Errorhandling

	Auxilliary commands
	Center of mass motion
	Finding particles and bonds
	Additional Tcl math-functions
	Checking for features of ESPResSo

	Lattice-Boltzmann
	Setting up a LB fluid
	LB as a thermostat
	Reading and setting single lattice nodes
	Setting up boundary conditions
	Choosing between the GPU and CPU implementations
	Electrohydrodynamics

	External package: mbtools
	Introduction
	Installing and getting started
	The main.tcl script
	Analysis
	System generation
	Utils
	mmsg

	Under the hood
	Internal particle organization

	Getting involved
	Community support and mailing lists
	Contributing your own code
	Developers' guide
	User's guide

	ESPResSo quick reference
	Features
	General features
	Interactions
	Debug messages

	Sample scripts
	Maxwell Equations Molecular Dynamics (MEMD)
	Equations of motion
	Discretization
	Initialization of the algorithm
	Time integrator
	Self–energy
	For which systems to use the algorithm

	The MMM family of algorithms
	Introduction
	MMM2D
	MMM1D
	ELC
	Errors

	Bibliography
	Index

