RAPID : TowardsA “Visual Ada”

1 INTRODUCTION

More and more, computer programs are becoming increasingly visual. Unfortunately, graphical interface
programming tends to be bath highly compli cated and system dependent. Various languages and graphical user
interface (GUI) design tods have been devel oped to simplify this process RAPID (the Rapid Ada Portable
Interface Designer) isthefirst free multi-platform, GUI design tod written entirely in and for Ada. By using the
RAPID todset, the programmer can quickly lay out a user interfacethrough a visual design process then have the
todset automaticall y generate Ada code that will create that interface

Since multi-platform graphical languages already exist, we dedded to leverage off what had already been
done, rather than implementing a new set of graphical primitives from scratch on several platforms. The two most
promising choices were Java [GJS96] and Tcl/Tk [Ou94]. Java has parked an enormous amount of interest bath
at universitiesand in industry. The exeautables created by a Java compil er can be run (interpreted) on many
different platforms. Java dso provides sgnificant graphical primitives. For these reasons, many have predicted
Java will become the preeminent programming language. In response, the Ada community has targetted compil ers
to the Java Virtual Machine [A097, CDG97]. These compil ers all ow the programmer to utili ze the functionality of
the VM while still retaining the advantages of programming in Ada. Tcl/Tk is avail able for freeon awide variety
of platforms, provides native “lodk and fed” GUI tods, and is a more mature and stable technology. SinceTcl isa
scripting language, it is much easier to test Tcl programs than programs written in a compil ed language such as
Java. Additionally, the existenceof TASH [We96], a straight-forward Ada binding to Tcl/ Tk, makesit an
attractive alternative for Ada programmers. The ease of using Tcl/Tk and TASH led usto choose them as the
target for our GUI design tod.

In addition to seleding an existing graphical language, we also barowed ideas from compil ers that
enabled us to develop the tod much more quickly, and also to make it much easier to switch the type of code that is
output. Sedion 2 will discussthetodset, and the featuresit provides. In Sedion 3, we describe our use of an
intermediate language and bodstrapping. Boatstrapping all owed us to generate over 40% of the RAPID code
using RAPID itsdf. Finally, in Sedion 4, we will contrast RAPID with similar work, and provide ideas for further
development.

2 THE RAPID TOOLSET

The RAPID todset consists of 3 programs: RAPID, B64 TO _TASH, and CALLED FROM_TCL.
RAPID isthe main GUI Designer, which all ows the programmer to visually lay out a graphical user interfaceand
have the Ada code for that interface generated automatically. B64 TO_TASH all ows the programmer to embed

GIF images in the ade without reguiring any external files. CALLED_FROM_TCL is used to generate @de that
will allow an Ada procedure to be used as a call back on a generated event.

Many widgets have actions associated with them. For example, the programmer may want a certain
procedureto ke alled if abutton ispressed. Sincethe button isimplemented using Tcl/Tk primitives, thisrequires
the use of a call back procedure. Registering the @llback with Tcl is done automatically for certain events (such as
a button push); however, the programmer may wish to add additi onal event handlers (e.g. a procedureto be alled
whenever the mouse entersthewindow). The syntax for these event handlersis relatively awkward, requiring the
use of the package | nt er f aces. Cand the Convent i on pragma. Additionally, all datain Tcl/Tk is gored asa
text string. On the allback, this data would need to be mnverted from a C-style string to the appropriate Ada
type. CALLED_FROM_TCL simplifies the programmer’s task by automaticall y generating the appropriate amde
toregister the @llback and do the necessary conversions. Given an input file @mnsisting of Tcl name, Ada
command, and argument count triplets, CALLED FROM_TCL will create an Ada package mnsisting of functions
to serve asintermediaries for the @ll back, and an exported procedure Gener at e_Bi ndi ngs, that, when call ed,
will register theseintermediaries.

Figure 1: The main RAPID window.

Figure 1 shows the main window for RAPID. Thefirst row of buttons all ows the user to create a new
window, open a previous window, save the arrent window, start the menu editor, or compil e the GUI to Ada code.
The second row of buttonsis used to seled what type of widget will be added (currently only text labels, text
buttons, picture buttons, and text entry widgets are supported, though more are being added.) Once awindow has
been opened, the user can use the left mouse button to click and drag out a new widget (as sown in Figure 2).

test gui

Figure 2: dragging out a new widget

When the user releases the left mouse button, a dialog box appears that asks the user tofill i n the
properties of the new widget. Figure 3 shows an example properties dialog bax for atext button. Oncethis has
been fill ed in, the user can reall this dialog and change the properties of the widget by clicking on it with the right

mouse button. In the dialog shown, the location and size of the text button have been automatically fill ed in, based
on theredangle that was drawn by the user. For this particular widget, the user must spedfy its name, the text that
will appear on the button, and its action (which Ada procedure will be @lled when the button is pushed). The
action should be a fully qualified Ada procedure name (e.g. Edi t _Menu. Cut _Choi ce).

Figure 3: The properties dialog for a text button

For a picture button, the “Text” field would be replaced by a“Picture” field, which would be the name of the GIF
file ontaining theimage. A text labdl widget has the same fields except thereisno action. The text entry widget
has an action (for when the user presses enter), but no text.

Using the menu editor button from the main todbar, the user can start the RAPID menu editor. This
visual interfaceis modeled after a Windows-based fil e browser. Indentation indicates nested items. From this
window, the user can insert or delete menu items. An inserted menu item will immediately foll ow the selected
item. Sincemenus can be nested, this creates sme ambiguity. If a submenu is highlighted, should the insertion
ocaur at the same level, or onelevel deegper? To resolve this ambiguity, each submenu has a symbd to its left
indicating whether or not an insertion will occur one level deeper (“>"), or at thesameleve (“[’). In Figure4, if
the user seleds “Insert Choice” the item will be placed on the same level, just before Save. Were “Tods’
highlighted, the insertion would occur as an item in the “Tods” menu, just before empile. The user can toggle
which type of insertion will occur by clicking on the symbd.

When the user optsto insert a menu or choice adialog (similar to the onein Figure 3) will pop up asking
the user to spedfy the text of the menu choice which character isthe shortcut (this character will be underlined
when the menu is displayed), if there is a keyboard shortcut (such as Ctrl+X), and what Ada procedure should be
called when thisitem is sleded. When the user closes the menu editor, the menu will be updated and redisplayed.

The RAPID GUI designer all ows the user to generate a simple graphical user interface without any
knowledge of Tcl/ Tk programming. Oncethey are pleased with their design, pushing the cmpil e button will
generate al of the necessary Ada code (using Tcl/ Tk viathe TASH binding) to display the interface and handle all
of the events.

edit_dizplay_main_menu

| File
Iew
Open
Clo=e
Submenu

Georgs
tave
Save A=
Exit

> Tools
Compile

Figure 4: The RAPID menu editor

3 RAPID DESIGN PROCESS

A GUI design tod is a sufficiently complex program that we would li ke some asgstancewriting it. In
particular, thetod itself has a graphical user interfacethat could be designed using a similar tod. Just as Pascal
was first implemented by writing a compil er in Pascal [Wi71], we dedded to use RAPID to develop itself. This
“chicken-and-egg” processisreferred to as boastrappgng [ASU86]. Thefirst step of this processwas to develop

an intermediate language for a graphical user interface and the abilit y to compil e thisinterfaceto Ada code. Since

the intermediate format chosen was a simple text fil e (unli ke most compil ers), we were able to write a portion of

the GUI using the intermediate language and then compileit. After doing that, we were able to repeatedly use the

tod to generate improved versions of itself. Following is a portion of the grammar used by RAPID:

<window> -
<menubar> -
<menuli st> -

<submenuinfo> -
<possble action> -
<iteminfo> -
<accderator> .
<widgets> N
<widgetlist> N
<widget> N
<picturebutton> -

<textbutton> -

WINDOW <name> <width> <height> <menubar> <widgets>
ENDOF WINDOW

MENUBAR <menulist> MENUBAR | A

MENU <submenuinfo> <menulist> |

ITEM <iteminfo> <menulist> | ENDOF

<name> <underline> <possble_action>

<action> | A

<name> <underline> <action> <accderator>

<accd_key> | A

WIDGETS <widggetlist> ENDOF WIDGETS | A

<widget> <widgetlist> | A

<picturebutton>|<textbutton>|...

PICTUREBUTTON <name> <x> <y> <width> <height> <action>
<picture>

TEXTBUTTON <name> <x> <y> <width> <height> <action>
<text>

Using the above grammar, we wrote the interfacefor the main RAPID window diredly in the intermediate

language. Below is aportion of the RAPID main window interface These 27 lines of the intermediate language

compiled to 506lines of Ada code. Note that whenever we provide a line @unt, it refersto anly non-blank, non-
comment lines of code.

W NDOW " . *
300 58

MENUBAR

MENU "File" O

| TEM "New"' 0 "Fil e_Menu. New_Choice" Crl +N

| TEM "Open" 0 "Fil e_Menu. Open_Choi ce" Ctrl +O
| TEM "Cl ose" 0 "File_Menu. C ose_Choice" Crl +F4
| TEM "Save" 0 "Fil e_Menu. Save_Choi ce" Crl +S
| TEM "Save As" 5 "Fil e_Menu. SaveAs_Choi ce"
ITEM "Exit" 1 "File_Menu. Exi t _Choi ce"

ENDOF MENU

MENU "Tool s" 0

| TEM " Compi | e" 0 "Tool s_Menu. Conpi | e_Choi ce"
ENDOF MENU

ENDOF MENUBAR

W DGETS

Pl CTUREBUTTON newButton 0 0 23 23 "Fil e_Menu. New_Choice" "new. gif"

Pl CTUREBUTTON openButton 23 0 23 23 "Fil e_Menu. Open_Choi ce" "open_gif"
Pl CTUREBUTTON saveButton 46 0 23 23 "Fil e_Menu. Save_Choi ce" "save_gif"
Pl CTUREBUTTON conpi | eButton 112 0 23 23 "Tool s_Menu. Conpi | e_Choi ce”

"compile_gif"

Pl CTUREBUTTON | abel Button 0 25 23 23 "Tool bar. Sel ect _W dget (Tool bar. LABEL) "
"l abel _gif"

Pl CTUREBUTTON text BButton 23 25 23 23
"Tool bar. Sel ect _W dget (Tool bar. TEXTBUTTON) " "text_button_gif"

Pl CTUREBUTTON pi ctureBButton 46 25 23 23
"Tool bar. Sel ect _W dget (Tool bar. PI CTUREBUTTON) " "pi cture_button_gif"
Pl CTUREBUTTON text EntryButton 69 25 23 23
"Tool bar. Sel ect _W dget (Tool bar. TEXTENTRY)" "text_entry_gif"
Pl CTUREBUTTON nenubutton 79 0 23 23 " Subwi ndow_Acti ons. Edi t _Menu" "menu_gif"
ENDOF W DCETS

ENDOF W NDOW

The mde length was also reduced using objed-oriented techniques. Each widget is part of a GUI widget
hierarchy. The methods for each widget include: reading itsintermediate form from afil e, writing its intermediate
form to afile, generating the ade for the widget, displaying the widget, and running a properties dialog for the
widget. Sincedifferent widgets are properties (e.g. all widgets have alocation and size), a particular widget
method can call the same method in its parent classto perform common functions. For example, the intermediate
form of every widget containsits name foll owed by its location. Reading thesein from thefileisdonein the
method for the widget class Each subclassoverrides this method and, within the method for the subclass call s the
method of its parent class

Thedesign of CALLED_FROM_TCL also reduces the amount of handwritten code. Asdescribed in the
previous edion, CALLED_FROM_TCL generates an intermediate function for each callback. Each intermediate
function consists only of a call to the Ada command along with the appropriate number of arguments. The
arguments are obtained using call s to the overloaded function Ar gunent . Each Ar gunent function takesin the
argument list and the number and returns that argument, converted to the appropriate Ada type. By this use of
intermediate functions and overloading, the cde for the binding isindependent of the types of arguments. This
means that CALLED_FROM_TCL does not need to do any compli cated parsing of spedfication files, sincethe

compil er will do the work of determining which Ar gunent function should be clled for each parameter. Asa
result, the CALLED_FROM_TCL tod required only 101lines of code for itsimplementation. In generating the
RAPID GUI Designer, CALLED_FROM_TCL converted a 6 line spedfication fileinto 140lines of Ada code.

Finally, B64 TO_TASH smplifiesincorporating picturesinto the graphical user interface Starting with
a GIF file, the programmer needs to convert thisinto base 64 format. This can be done using the fredy avail able
uudeview tod or using aMIME mailer. On theinternet, the UNIX version of uudeview can be downloaded from
http://zeus.informatik.uni-frankfurt.edw%7Efp/uudeview; the Windows version is at http://www.miken.com/uud
[FJ97]. Given abase 64 encoding of the image, B64_ TO_TASH will create an Ada package with asingle
procedure Gener at e_| mage, which loads the image into the Tcl interpreter. Each 23x23 pxel image for a
RAPID button yielded approximately 38 lines of Ada code.

In combination, these tod s automatically generated over 20000f the 5000lines of code in the RAPID
todset (over 40%). By emphasizing reusability of code and automatic aode generation through bodstrapping, we
were able to develop the tod far faster than if we had used traditional techniques.

4 CONCLUSIONS AND FUTURE WORK

In conclusion, RAPID all ows an Ada programmer to add a GUI to his program in avery simple and
portable way. The wmde that is generated will run on any of the many platforms that support Tcl/Tk (including
Windows, Macintosh, and Unix machines). Also, the GUI design tod uses a very intuiti ve visual processto create
the desired interface The portability of the resultant code sets RAPID apart from similar products, such asthe
Aonix GUI Builder [A097] and the proposed CLAW Appli cation Builder [BM97] (CLAW also claimsto be
“portable,” but this portahility refersto its use with different compil ers, not on different platforms).

SinceRAPID isfreaevare and will run on avariety of computers, this makesit an attractive tod for usein
an educational setting. At arecent SIGCSE conference it was pointed out that CS curricula should address
human-computer interfaceisaies and visual programming [Si98]. RAPID provides a good vehicle for exploring
these isues with students, and also further demonstrates the utilit y of Ada bath as a commercial-use language and
ateaching language.

Additionally, the sourcefor RAPID is avail able for download via ftp from the Internet. This providesan
opportunity for others to contribute to the product by adding additional widgets or additional functionality to the
existing widgets. We also intend to continue to improve the product based on our observations from using it, and
input from others. Since RAPID uses the ohjed-oriented features of Ada 95in its design, adding widgetsisa
straightforward processconsisting of creating a new type and overloading the appropriate methods. The RAPID
design processalso gresatly speeds expansion via bodstrapping and code reuse.

REFERENCES

[ASUB6] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and Todls, Addison-Wed ey, 1986

[A097] Aonix Inc. Objed Ada, 1997

[BM97] R.Brukardt and T. Moran. “CLAW, aHigh Level, Portable, Ada 95 Binding for Microsoft Windows,”
Tri-Ada’97, pp. 91-104, ACM, 1997

[CDG97] C. Comar, G. Dismukes, and F. Gasperoni. “Targeting GNAT to the Java Virtual Machine,” Tri-Ada
'97, pp. 149161, ACM, 1997.

[FI97] E. Foster-Johnson. Graphical Applicationswith Tcl & Tk, Second Edition, M&T Bodks, 1997

[GJS96] J. Godling, B. Joy, G. Stede. The JavalJ Language Spedfication, Addison-Wedey, 1996

[Ou94 J Ousterhout. Tcl andthe Tk Todlkit, Addison-Wesley, 1994

[Si9g] SIGCSE Town Meding, Atlanta GA, February 1998

[We96] T.Westley, “TASH: A FreePlatform-Independent Graphical User Interface Development Todkit for
Ada,” Tri-Ada’96, pp. 165178 ACM, 1996

[Wi71] N. Wirth, “The design of a Pascal compiler,” Sdtware--Practice and Experience, vol. 1, no. 4, pp. 309
333

