
SimulAVR - an AVR simulation framework
A simulator for the Atmel AVR family of microcontrollers.

For simulAVR version 1.0.0, 12 February 2012.

by Theodore A. Roth, Klaus Rudolph, William Rivet

Send bugs and comments on SimulAVR to
simulavr-devel@nongnu.org

This file documents the simulavr program.

Copyright c© 2001, 2002, 2003 Theodore A. Roth

Copyright c© 2004 Theodore A. Roth, Klaus Rudolph

Copyright c© 2005 Klaus Rudolph

Copyright c© 2008 Knut Schwichtenberg

Copyright c© 2009 Joel Sherrill, Michael Hennebry, Onno Kortmann, Thomas Klepp

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Free Software Foundation.

mailto:simulavr-devel@nongnu.org

i

Table of Contents

1 Introduction . 1

2 Invoking . 3

3 Using with avr-gdb . 5

4 Tracing . 6

5 Graphic User Interface . 8
5.1 Details of the example GUI . 8

5.1.1 UpdateControl . 8
5.1.2 Net . 9
5.1.3 AnalogNet . 9
5.1.4 LCD . 10
5.1.5 Keyboard . 10
5.1.6 SerialRx / SerialTx . 10
5.1.7 Scope . 11

5.2 Command Line Parameter -u vs. Interpreter 11

6 Building and Installing SimulAVR 13

7 The VPI interface to Verilog 16
7.1 Usage . 16
7.2 Example ‘iverilog’ command line . 16
7.3 Bugs and particularities . 17

8 Examples . 18
8.1 TCL Anacomp Example . 18
8.2 Python Example . 18
8.3 Simple Example . 18
8.4 LCD and SerialRx, SerialTx Example . 18
8.5 Keyboard and SerialRx Example . 19

9 Platform Related Notes . 21
9.1 Gentoo GNU/Linux distribution . 21

10 Limitations . 22
10.1 Overall Limitations . 22
10.2 CPU Limitations . 22

ii

11 Help Wanted . 24

Index . 25

Chapter 1: Introduction 1

1 Introduction

The SimulAVR program is a simulator for the Atmel AVR family of microcontrollers. Sim-
ulAVR can be used either standalone or as a remote target for avr-gdb. When used in
gdbserver mode, the simulator is used as a back-end so that avr-gdb can be used as a source
level debugger for AVR programs.

SimulAVR started out as a C based project written by Theodore Roth. The hardware
simulation part has since been completely re-written in C++. Only the instruction decoder
and the avr-gdb interface are mostly copied from the original simulavr sources. This C++
based version was known as simulavrxx until it became feature compatibile with the old
simulavr code, then it renamed back to simulavr.

What features are new:

• Run multiple AVR devices in one simulation. (only with interpreter interfaces or special
application linked against simulavr library) Multiple cores can run where each has a
different clock frequency.

• Connect multiple AVR core pins to other devices like LCD, LED and others. (environ-
ment)

• Connect multiple AVR cores to multiple avr-gdb instances. (each on its own socket/port
number, but see first point for running multiple avr cores)

• Write simulation scripts in Tcl/Tk or Python, other languages could be added by
simply adding swig scripts!

• Tracing the execution of the program, these traces support all debugging information
directly from the ELF-file.

• The traces run step by step for each device so you see all actions in the multiple devices
in time-correct order.

• Every interrupt call is visible.

• Interrupt statistics with latency, longest and shortest execution time and some more.

• There is a simple text based UI interface to add LCD, switches, LEDs or other compo-
nents and can modify it during simulation, so there is no longer a need to enter a pin
value during execution. (Tcl/Tk based)

• Execution timing should be nearly accurate, different access times for internal RAM /
external RAM / EEPROM and other hardware components are simulated.

• A pseudo core hardware component is introduced to do "printf" debugging. This
"device" is connected to a normal named UNIX socket so you do not have to waste a
UART or other hardware in your test environment.

• ELF-file loading is supported, no objcopy needed anymore.

• Execution speed is tuned a lot, most hardware simulations are now only done if needed.

• External IO pins which are not ports are also available.

• External I/O and some internal states of hardware units (link prescaler counter and
interrupt states) can be dumped ot into a VCD trace to analyse I/O behaviour and
timing. Or you can use it for tests.

The core of SimulAVR is functionally a library. This library is linked together with a
command-line interface to create a command-line program. It is also linked together with a

Chapter 1: Introduction 2

interpreter interface to create a library that can be use by a graphical interpreter language
(currently Python / TCL). In the examples directory there are examples of simulations with
a graphical environment (with the Tcl/Tk interface) or writing unit tests by using Python
interface. The graphic components do not show any hardware / registers of the simulated
CPU. It shows only external components attached to the IO-pins of the simulated CPU.

Chapter 2: Invoking 3

2 Invoking

The following options are only valid for the command-line version of simulavr:

‘-d --device <device name>’
tell simulavr, what type of device it has to simulate. The following devices are
supported: at90s8515, at90s4433, atmega128, atmega48, atmega88, atmega168,
atmega328. To find out, which devices are supported with your current instal-
lation, use the help option!

‘-f --file <name>’
load ELF-file <name> for simulation in simulated target.

‘-F --cpufrequency <value>’
set the CPU frequence to <Hz>

‘-g --gdbserver’
running as avr-gdb-server

‘-G’ running as avr-gdb-server and write debug info for avr-gdb-connection

‘-n --nogdbwait’
do not wait for avr-gdb connection

‘-m <nanoseconds>’
maximum run time of <nanoseconds>

‘-p <port>’
change <port> for avr-gdb server to port

‘-R --readfrompipe <offset>,<file>’
add a special pipe register to device at IO-offset and opens <file> for reading

‘-t --trace <file name>’
enable trace outputs into <file name>

‘-T --terminate <label> or <address>’
stops simulation if PC runs on <label> or <address>. If this parameter is omit-
ted, simulavr has to be terminated manually. For <label> you can use any label
listed in the map-file of the linker - no matter if it is ever reached or not.

‘-u’ run with user interface for external pin handling at port 7777. This does not
open any graphics but activates the interface to communicate with the environ-
ment simulation.

‘-v --version’
show the software version of simulavr

‘-V --verbose’
output some hints to console

‘-W --writetopipe <offset>,<file>’
add a special pipe register to device at IO-Offset and opens <file> for writing

‘-s --irqstatistic’
Writes IRQ statistic to stdout at the end of simulation.

Chapter 2: Invoking 4

‘-o <filename|->’
Writes all available VCD trace sources for a device to <filename> or to stdout,
if <-> is given.

‘-c <trace-params>’
Enable a trace dump, for valid <trace-params> see below.

‘-h --help’
show commandline help for simulavr and what devices are supported

‘-a --writetoabort <offset>’
add a special register to device at IO-Offset which aborts simulation

‘-e --writetoexit <offset>’
add a special register to device at IO-Offset which exits simulation (if you write
to this IO-Offset, then the written value will be given back as exit value of the
simulator!)

The commands -R / -W / -a / -e are not AVR-hardware related. Here you can link an
address within the address space of the AVR to an input or output pipe. This is a simple
way to create a "printf"- debugger, e.g. after leaving the debugging phase and running the
AVR-Software in the simulator or to abort/exit a simulation on a specified situation inside
of your program. For more details see the example in the directory simple ex1.

Chapter 3: Using with avr-gdb 5

3 Using with avr-gdb

Using the simulator with avr-gdb is very simple. Start simulavr with:

simulavr -g

Now simulavr opens a socket on port 1212. If you need another port give the port
number with:

simulavr -p5566

which will start simulavr with avr-gdb socket at port 5566.

After that you can start avr-gdb or ddd with avr-gdb.

avr-gdb

ddd --debugger avr-gdb

In the comandline of ddd or avr-gdb you can now enter your debug commands:
file a.out

target remote localhost:1212

load

step

step

....

Attention: In the actual implementation there is a known bug: If you start in avr-gdb
mode and give no file to execute -f filename you will run into an "Illegal Instruction".
The reason is that simulavr runs immediately with an empty flash. But avr-gdb is not con-
nected and could stop the core. Solution: Please start with simulavr -g -f <filename>.
The problem will be fixed later. It doesn’t matter whether the filename of the simulavr
command line is identical to the filename of avr-gdb file command. The avr-gdb downloads
the file itself to the simulator. And after downloading the core of simulavr will be reset
complete, so there is not a real problem.

Connecting multiple devices via multiple sockets is discussed in the scripting section.

Chapter 4: Tracing 6

4 Tracing

One of the core features is tracing one or multiple AVR cores in the simulator. To enable the
trace feature you have simply to add the -t option to the command line. If the ELF-file you
load into the simulator has debug information the trace output will also contain the label
information of the ELF-file. This information is printed for all variables in flash, RAM,
ext-RAM and also for all known hardware registers. Also all code labels will be written to
the trace output.

What is written to trace output:
2000 a.out 0x0026: __do_copy_data LDI R17, 0x00 R17=0x00

2250 a.out 0x0028: __do_copy_data+0x1 LDI R26, 0x60 R26=0x60 X=0x0060

2500 a.out 0x002a: __do_copy_data+0x2 LDI R27, 0x00 R27=0x00 X=0x0060

2750 a.out 0x002c: __do_copy_data+0x3 LDI R30, 0x22 R30=0x22 Z=0x0022

3000 a.out 0x002e: __do_copy_data+0x4 LDI R31, 0x01 R31=0x01 Z=0x0122

3250 a.out 0x0030: __do_copy_data+0x5 RJMP 38

3500 a.out 0x0038: .do_copy_data_start CPU-waitstate

3750 a.out 0x0038: .do_copy_data_start CPI R26, 0x60 SREG=[------Z-]

4000 a.out 0x003a: .do_copy_data_start+0x1 CPC R27, R17 SREG=[------Z-]

4250 a.out 0x003c: __SP_L__ BRNE ->0x0032 .do_copy_data_loop

4500 a.out 0x003e: __SREG__,__SP_H__,__do_clear_bss LDI R17, 0x00 R17=0x00

4750 a.out 0x0040: __SREG__,__SP_H__,__do_clear_bss+0x1 LDI R26, 0x60 R26=0x60 X=0x0060

5000 a.out 0x0042: __SREG__,__SP_H__,__do_clear_bss+0x2 LDI R27, 0x00 R27=0x00 X=0x0060

5250 a.out 0x0044: __SREG__,__SP_H__,__do_clear_bss+0x3 RJMP 48

5500 a.out 0x0048: .do_clear_bss_start CPU-waitstate

What the columns mean:

• absolute time value, it is measured in microseconds (us)

• the code you simulate, normally shown as the file name of the loaded executable file.
If your simulation runs multiple cores with multiple files you can see which core is
stepping with which instruction.

• actual PC, meaning bytes not instructions! The original AVR documentation often
writes in instructions, but here we write number of flash bytes.

• label corresponding to the address. The label is shown for all known labels from the
loaded ELF-file. If multiple labels are located to one address all labels are printed. In
future releases it is maybe possible to give some flags for the labels which would be
printed. This is dependent on the ELF-file and BFD-library.

• after the label a potential offset to that label is printed. For example main+0x6 which
means 6 instructions after the main label is defined.

• The decoded AVR instruction. Keep in mind pseudo-opcodes. If you wonder why you
write an assembler instruction one way and get another assembler instruction here you
have to think about the Atmel AVR instruction set. Some instructions are not really
available in the AVR-core. These instructions are only supported for convenience (i.e.
are pseudo-ops) not actual opcodes for the hardware. For example, CLR R16 is in the
real world on the AVR-core EOR R16,R16 which means exclusive or with itself which
results also in zero.

• operands for the instruction. If the operands access memory or registers the actual
values of the operands will also be shown.

- If the operands access memory (Flash, RAM) also the labels of the accessed ad-
dresses will be written for convenience.

Chapter 4: Tracing 7

- If a register is able to build a special value with 16 bits range (X,Y,Z) also the new
value for this pseudo register is printed.

- If a branch/jump instruction is decoded the branch or jump target is also decoded
with the label name and absolute address also if the branch or jump is relative.

- A special instruction CPU-waitstate will be written to the output if the core
needs more then one cycle for the instruction. Sometimes a lot of wait states will
be generated e.g. for eeprom access.

• if the status register is affected also the SREG=[------Z-] is shown.

Attention: If you want to run the simulator in connection to the avr-gdb interface and
run the trace in parallel you have to keep in mind that you MUST load the file in avr-
gdb and also in the simulator from command-line or script. It is not possible to transfer
the symbols from the ELF-file through the avr-gdb interface. For that reason you always
must give the same ELF-file for avr-gdb and for simulavr. If you load another ELF-file via
the avr-gdb interface to the simulator the symbols for tracing could not be updated which
means that the label information in the trace output is wrong. That is not a bug, this is
related to the possibilities of the avr-gdb interface.

Chapter 5: Graphic User Interface 8

5 Graphic User Interface

To adjust reader’s expectations about simulavr let’s start with some design goals. The main
design goals are:

• Create a framework instead of an all-purpose simulator

• Keep the simulator well structured

• Make it easy to extend this simulator

• Develop it for the needs of the developer rather than everybody future needs

To find a framework instead of an all-purpose simulator might be confusing but is the
good old habit of Unix programs. Keep it simple and easy to extend. That’s what can be
found over here.

Next let’s define what a GUI is necessary for. Showing the source code, variables and so
on is done by avr-gdb and that comes with a GUI e.g. ddd. There is no need to provide an
alternative. Within the examples provided together with simulavr the following graphical
components are provided by the script gui.tcl:

• Digital-IO Display of the status of an port pin output as well as a mechanism to set
an input value to an input pin

• Analog Input Set an analog value to a port pin

• LCD Have a 4*20 character LCD with a 4 bit data interface

• PC Keyboard Have a PC serial keyboard

• Scope This item is only mentioned here because it is available. The function is a
development forecast.

• SerialRx / SerialTx Have distinct serial input and output devices

To use any of these a program providing the graphical representation of these components
must run and take / provide contents via the socket 7777. Additionally each currently
used instance of these components have to be registered with the simulation kernel to
be updated. The current implementation adds a new graphic representation of a GUI-
component whenever a new instance of the corresponding component is registered. For
more details see below.

5.1 Details of the example GUI

In the following sections all currently available components defined in the script gui.tcl
are described. The reader should be aware that gui.tcl is an example. If you don’t like it
feel free to change it accordingly.

5.1.1 UpdateControl

While processing the general registration of the GUI (-u parameter or TCL: set UI [new_

UserInterface 7777]) a button is created. Pressing this button makes the button’s back-
ground color change from red to green vice versa. While pressing this button values changed
by the simulation are exchanged between the simulation and the GUI. Until this button
pressed, any updates are ignored.

Chapter 5: Graphic User Interface 9

5.1.2 Net

Commonly spoken a Net connects a digital IO-pin of the simulated CPU with another pin
like a copper wire. In the context of the GUI a Net provides the possibility to enter a value
for an input pin and also shows the status of an output pin. Valid values for this GUI
element are:

• H representing a "hard" high value - tied the pin directly to the supply voltage (TCL:
$Pin HIGH)

• h representing a pulled-up high - here the input is tied by a resistor to the supply (TCL:
$Pin PULLUP)

• t Tri-state this input is left open (TCL: $Pin TRISTATE)

• l like "h" but pulled to GND (TCL: $Pin PULLDOWN)

• L like "H" but connected to GND (TCL: $Pin LOW)

Additionally the value "S" might appear, if there is a short circuit (TCL:
$Pin SHORTED).

For the input direction the values are selected by a radio button. The following snippet
from the TCL example anacomp shows the usage of the Net component

ExtPin epb $Pin_TRISTATE $ui "->BO" ".x"

Net portb

portb Add epb

portb Add [AvrDevice_GetPin $dev1 "B0"]

First there is an endpoint for the Net created with the instance name "epb".

• "epb" is created by calling the class ExtPin (via swig) within the simulator (see
net.cpp).

• "$Pin TRISTATE" define the level to be tri-state (no pull-up, no pull-down).

• "$ui" is the reference to the wanted GUI.

• "->B0" is the object headline / description.

• ".x" is the window reference.

Next an instance of a digital Net is created named "portb". The next two statement wire
the Net, one end of the cable is connected to the graphic while the other end is connected
to pin "B0" of the device "$dev1".

Each instance-name and string in the TCL script is case sensitive. CPU-Pins (e.g. "B0")
always begin with a capital character. Pins names of external devices (e.g. Clock-Pin of the
Keyboard) are always written in lower-case charcters ("clk"). TCL itself has some ideas of
the components names. If you use lowercase characters it is mostly fine.

5.1.3 AnalogNet

Net and AnalogNet are at least the same. Digital Nets have potentially distinct input
and output values that represent a smll number of digital states. An AnalogNet has a
"continuum" of values represented by numbers in the range from 0..MAX INT. Based on
the absence of a simulated ADC this simplified analog model is sufficient but might change
in the future. After entering a analog value into the AnalogNet input field a click on the
update button of this graphic object forwards the analog value to the simulation.

Chapter 5: Graphic User Interface 10

ExtAnalogPin pain0 0 $ui "ain0" ".x"

Net ain0

ain0 Add pain0

ain0 Add [AvrDevice_GetPin $dev1 "D6"]

The parameter of ExtAnalogPin are identical to ExtPin, with the difference of the default
value. Here "0" is the default value. The rest including the "Net" and "Add" commands
are described above.

5.1.4 LCD

The LCD component simulates a simplified character LCD with a HD 44780 compatible
controller. The LCD simulation is simplified for the following reasons:

• only a 4 * 20 LCD layout is available (no others like 1 * 16, ...).

• the graphic representation is character based. Display of of characters follows the rules
of your display, not of the LCD character generator.

• loadable characters are not supported.

• reading of display is not supported.

• reading of busy flag does not give the current address in the lower bits.

• scrolling not supported.

• shift right / left of the display content is not supported.

• only one character set is supported - based on your diplay font.

• only the 4 bit interface is supported. At start-up the commands are interpreted as if
an eight bit interface is available (one write cycle per command). After finishing the
initialization switching to the four bit interface is permitted at any time.

With these limitations, one might wonder what actually is supported:

A simple display of characters with a simplified HD 44780 interface plus some
easy to implement LCD-controller commands.

The timing as described by the HD 44780 datasheet is used to set the BusyFlag. Prob-
lems detected by the LCD (such as invalid initialization, command not supported, command
to early,...) are output to the standard error device. More details of the LCD specifc com-
mands are described at the LCD example.

5.1.5 Keyboard

The Keyboard component simulates a simplified PC keyboard. It generates Make-Codes
and Break-Codes for pressing and releasing a button of the PC’s keyboard. After selecting
the keyboard icon in the simulator window (gui.tcl) keys pressed and released on the PC
keyboard are redirected to Keyboard simulation component. There they are transformed
into a serial stream and sent synchronous with a clock signal to the AVR application. The
simulation of the keyboard is simplified too. There is no communication to the keyboard
supported. Neither reading the status nor re-/setting of the keyboard LEDs is supported.
More details of the Keyboard specifc commands are described at the Keyboard example.

5.1.6 SerialRx / SerialTx

The SerialRx component as well as the SerialTx component simulates a serial receiver /
transmitter and display. The transfer format is fixed set to 8n1 (8 Databits, No Parity,

Chapter 5: Graphic User Interface 11

1 Stopbit) The baud rate can be set to any "unsigned long long" value - not only to the
common baud rates 9600, 19200,... By default the baud rate is set to 115.200. The graphic
representation shows a display field that contains the received / entered characters. The
following display translations are made for the SerialRx component: " " is displayed by
" ". Characters which are not marked by the function isprint as printable are displayed
in hex-format (e.g. 0x0d for "\n").

The additional three hashed lines in the GUI shall be used for "status", "pin", "bau-
drate" in a future release of simulavr. The necessary data is currently not forwarded by the
simulation to the GUI.

The SerialRx component provides a Pin named "rx" that has to be wired as usual. The
SerialTx component provides a Pin named "tx" that has to be wired as usual. For more
details of how to use the SerialRx component see the Keyboard example. A combined
SerialRx / SerialTx example is added to LCD example.

5.1.7 Scope

The Scope does not yet have a real functioning back-end in the simulator. Before this
feature was implemented completely the development was halted.

5.2 Command Line Parameter -u vs. Interpreter

Coming into touch with simulavr it might be confusing why there is a simulavr program
providing a command-line switch -u and all the swig story and a interpreter program. Lets
start with a closer look to the example anacomp/checkdebug.*. It’s a personal preference
of the reader if you look at the python or the TCL source. There is no difference in function
between them. Simulavr is able to simulate the AVR silicon device as well as some external
components which will be called Environment further on. Each Environment component
needs a graphical representation, a registration in the simulator and a connection to one
or more pins of the simulated CPU (see chapter above). To keep these tasks simple and
clearly separate the graphical representation is done by the script examples/gui.tcl. This
script is able only to display components and forward inputs to the simulator via socket
7777 (and currently only on the local host).

Now we should compare main.cpp of simulavr and anacomp/checkdebug.*. Both files
are the "main" routines (spoken in C-language). They share major parts while other’s are
different. The simulator core can be understood as a library that is linked to the main to
have a simulator either with the result of a command line program or with the result of an
extension to an interpreter language

From the beginning of the TCL-script up to set sc [GetSystemClock] the script is
functional identical to main.cpp with the corresponding command-line parameters set. The
following line $sc AddAsyncMember $ui is graphic specific and registers an update button
of the graphic.

The important part for understanding is, defining a NET within the simulator registers
this component. Only registered components are updated by the simulator. The current
implementation provides no network interface to register graphical components. Instead the
swig-I/F is able to access any function of the simulator core. Here the framework character
of simulavr becomes visible. Each specific simulation needs a specific main-program to

Chapter 5: Graphic User Interface 12

display the necessary graphical components. Within a script file it is much simpler to
create a case specific simulation GUI.

If there is anyone looking for a task to create an all-purpose GUI feel free to start.

Chapter 6: Building and Installing SimulAVR 13

6 Building and Installing SimulAVR

SimulAVR uses GNU auto tools. This means that, given a tarball, for version 1.0.0, for
example, you should be able to use the following steps to build and install simulavr:

tar zxvf simulavr-1.0.0.tar.gz

cd simulavr-1.0.0

./configure {configure options}

make

make install

This will build simulavr and, if switched on by configure options, some extension
modules and libraries. It installs simulavr itself, libraries and some examples and the
‘simulavr.info’ in documentation directory ‘{prefix}/share/doc/simulavr’.

If you want to install ‘simulavr.pdf’ too, you can do that after the normal installation:

make install-pdf

To install simulavr documentation as html:

make install-html

Installing doxygen documentation is also possible, if doxygen is installed and switched
on by configure option:

make install-doxygen

Same is possible for the verilog extension. avr.vpi will be installed in ‘{prefix}/lib/ivl’
if switched on by configure option:

make install-vpi

Python interface will not be installed by make-install..., because a right installation
depends on the actual python installation. To support the installation of python module
there is a ‘setup.py’ in ‘src’ directory:

cd simulavr-1.0.0/src

python setup.py install

If you want to create a egg-package from this python module, you have to install python’s
setuptools package first. Then run:

python setup.py build bdist_egg

For more possibilities on installing python interface, please see python documentation
(distutils package) and documentation for setuptools python package.

Simulavr does rely on a few other GNU tools. In particular, it relies on libbfd from
binutils, and by libbfd’s dependency, it also relies on libiberty.

I have found it useful to install my hand-configured-installed files in one area. That way
I can put the AVR-tools in my path only when I’m working on AVR related work. For
reference, here is how I could install AVR tools to ‘/home/user/install’:

mkdir b-binutils

tar jxvf binutils-2.19.tar.bz2

cd b-binutils

../binutils-2.19/configure --enable-install-libbfd \

--prefix=/home/user/install --target=avr

Chapter 6: Building and Installing SimulAVR 14

make && make install

Then I configure/install simulavr as follows:

tar zxvf simulavr-1.0.0.tar.gz

cd simulavr-1.0.0

./configure --prefix=/home/user/install

make

make install

Ideally this is all you should need to build/install simulavr. Below are some of the
configure options.

‘--prefix’
Use this option to specify the root directory to install simulavr to. ‘/usr/local’
is the default.

‘--with-bfd’
If configure tells you it can’t find libbfd, try --with-bfd=/your/path/. Notice
that you are expected to point to the libbfd from binutils configured for AVR.

‘--with-libiberty’
In the unlikely event that your properly installed AVR binutils results in sim-
ulavr finding libbfd but not libiberty, use this option. Use of this option usually
means the libiberty you are looking at did not come from the same binutils
install that gave you the libbfd you have.

‘--disable-tcl’
By default, the Tcl interface is enabled. However, it is possible to build a
standalone simulavr executable without Tcl. When --disable-tcl is specified,
neither the simulator shared library not the examples requiring the Tcl GUI
will be built. By default, Tcl is enabled but if Tcl is not installed on your
computer, Tcl will be automatically disabled.

‘--with-tclconfig’
If configure tells you it can’t find ‘tclConfig.sh’, try --with-

tclconfig=/your/path/.

‘--enable-maintainer-mode’
If specified on the configure command, the generated Makefiles will do more
dependency tracking. In particular, they will check the dependencies on all
automake and autoconf generated files. When not building in maintainer mode,
the file ‘src/keytrans.h’ will not be built or dependencies checked.

‘--with-winsock’
Specifies, where the winsock library is located. Only used, if you want to build
simulavr for windows with MingW environment and this library cannot be
found. This should not occur.

‘--with-zlib’
Specifies, where the libz library is located. Libtool want’s to link against libz
too, this library isn’t used by simulavr. Only used, if you want to build simulavr
for windows with MingW environment and this library cannot be found. This
should not occur.

Chapter 6: Building and Installing SimulAVR 15

‘--enable-doxygen-doc’
If Doxygen is installed, you can build too a programming documentation. If
you enable this with this option, then you can build this documentation with
make doxygen-doc. (not enabled by default)

‘--enable-python’
If Python is installed with a version younger than 2.1, then you can enable
building the python interface. Python is also used for some tests and examples.
If not enabled, (the default) then you can’t run this tests and examples.

‘--enable-verilog’
If you have installed verilog package, then it’s possible to enable building a
verilog interface. (not enabled by default) See next chapter!

There are more options for running ./configure. To find out, what’s possible, see
autotools documentation or try ./configure --help.

A few words about libbfd and libiberty: simulavr dosn’t use any AVR specific things
from libbfd, so it should be possible to use the system libbfd (and libiberty). But I have
seen cases, where building simulavr against this system libbfd was successfull and running
simulavr with a AVR elf file end in a segmentation fault. Then it’s necessary to use a special
AVR binutils build.

How to build simulavr on MingW/Windows:

(Your should have experience with shell scripts, MingW on Windows, how to configure
MingW)

• Install msys and mingw on your windows box. Further you need the following pack-
ages for msys/mingw: autoconf, automake, crypt, gmp, libtool, mpfr, perl, pthreads,
w32api, zlib.

• If you want to use python interface, you need to install a python package and swigwin.

• Try autoconf --version, if autoconf isn’t found, then it could be that you can find
autoconf-VVV (with VVV as autoconf version!) in your /mingw/bin. If so, copy
autoconf-VVV to autoconf. Same procedure with automake, autoheader, autom4te,
aclocal!

• Unpack simulavr package or checkout/clone a simulavr repo. If you use a simulavr
distribution package (you can find configure script), then it’s high recommended to run
make clean && make distclean && ./bootstrap -c in package root.

• Run ./bootstrap in package root. This will (re)build configure script and also all
necessary files to run configure.

• Then run configure: ./configure --with-bfd=/mingw

• If configure was successfull, then you cann proceed with make and so one ...

• If you want to use python interface and you have installed Python and SWIG, then
you should use the following options for configure: ./configure --with-bfd=/mingw

--enable-python PYTHON_LDFLAGS="-LX:/PYPATH/libs -lpython25" where
‘X:/PYPATH’ is your path to your python installations. (e.g. where the python.exe
can be found) Replace also the name of the library (here ‘python25’) to the right
name from your installation, for python 2.6.x it is for example ‘python26’ Don’t use
configure option --enable-python=X:/PYPATH/python, because there is a bug in m4
scripts.

Chapter 7: The VPI interface to Verilog 16

7 The VPI interface to Verilog

Verilog, as a language designed for verifying logic allows to describe a hardware setup in
a very general way. Simulators, such as Icarus Verilog can then be used to simulate this
hardware setup. Tools such as ‘gtkwave’ can be used to verify the output of a circuit by
looking at the waveforms the simulation generates.

Simulavr comes with an interface to (Icarus) Verilog. If the configure script finds the
necessary header file for the interface, the so called VPI (Verilog Procedural Interface) to
Icarus Verilog will be build. The result of this is a file called ‘avr.vpi’. This file, in essence
a shared library, can then be used as an externally loaded module after compilation:

$ iverilog [...] # compile verilog .v into .vvp

$ vvp -M<path-to-avr.vpi> -mavr [...] # run compiled verilog

with additional

avr.vpi module

In principle, it would also be possible to implement the AVR completely in verilog (and
there are several existing models, see e.g. opencores.org), but this would result in decreased
performance and duplicated effort, as not only the core needs to be implemented, but also
the complex on-board periphery.

7.1 Usage

The Verilog interface comes with glue code on the verilog side, for which the main file is
‘avr.v’ in ‘src/verilog’. This is a thin wrapper in Verilog around the exported methods
from the core of Simulavr, consisting of the AVRCORE module encapsulating one AVR core
and avr_pin for I/O through any AVR pin. On top of this, files named ‘avr_*.v’ exist in
the same directory which contain verilog modules reflecting particular AVR models from
Simulavr. The modules in these files are meant to be the interface to be used to connect to
simulavr by the user, they have a very simple signature:

module AVRxyz(CLK, port1, port2, ...);

where port1, port2, ... are simple arrays of inout wires representing the various ports
of the selected AVR. Note that the width of the arrays as visible from the Verilog side is
always eight; this does not mean that all bits are connected on the simulavr side!

Clock generation and distribution to the AVR cores is done from the verilog side. Simply
connect a clock source with the preferred frequency to the CLK input of the AVR code.

The more complete, low level interface to simulavr in ‘avr.vpi’ can be accessed directly.
For documentation of the available functions, see either ‘src/vpi.cpp’ or look into the
implementation of the high level modules in ‘avr_*.v’.

7.2 Example ‘iverilog’ command line

A simple run with the ‘avr.vpi’ interface could look like this:

$ iverilog -s test -v -I. $(AVRS)/avr.v $(AVRS)/avr_ATtiny15.v \

$(AVRS)/avr_ATtiny2313.v -o test.vvp

Chapter 7: The VPI interface to Verilog 17

Here for a model having both an ATtiny15 and an ATtiny2313 in the simulation, and
the top module test and the environment variable $AVRS pointing to the right directory.

A set of a few simple examples has been put into the ‘verilog/examples’ subdirectory
of the Simulavr source distribution. This directory also contains a ‘Makefile’ which can be
used as an example of command sequences for compiling verilog, running it and producing
‘.vcd’ output files to be viewed with ‘gtkwave’.

7.3 Bugs and particularities

• No problems have been found when instantiating multiple AVR instances inside verilog.

• Analog pins have not been tested and will probably need some changes in the verilog-
side wrapper code.

Chapter 8: Examples 18

8 Examples

Simulavr is designed to interact in a few different ways. These examples briefly explain the
examples that can be found in the source distribution’s ‘examples’ directory.

There are examples, which use Tcl/Tk. For that you must also install Itcl package for
your Tcl. It will be used in all examples with Tcl and a Tk GUI! Over that you can find
also examples for python interface and for the verilog module.

The anacomp example is all we have started with. Anacomp brings up an Itcl based
GUI which shows two analog input simulations, a comparison output value, and a toggle
button on bottom. After changing the inputs, hit the corresponding update to clock the
simulation to respond to the changed inputs.

The avr-gdb session for me requires a "load" before hitting "continue", which actually
starts the simulation.

It is strongly recommended to implement own simulation scripts very closely to the
examples. Usage of a different name than .x for the grahic frame need changes of gui.tcl
as well as some simulavr sources. So stay better close to the example.

8.1 TCL Anacomp Example

This is Klaus’ very nice original example simulation.

After performing the build, go to the ‘examples/anacomp’ directory and try make do

(without gdb) or make dogdb.

8.2 Python Example

There is a file ‘README’ in ‘examples/python’ path, which describes examples there. You
can try it with make run_example, this will run all available examples together. Or try
make example1 till make example4 to run each example alone.

8.3 Simple Example

This sample uses only simulavr to execute a hacked AVR program. I say "hacked" because
is shows using 3 simulator features that provide input, output and simulation termination
based on "magic" port access and reaching a particular symbol. It is only really useful for
getting your feet wet with simulavr, it is not a great example of how to use simulavr. It is
thought to be useful enough to the absolute newbie to get you started though.

After performing the build, go to the ‘examples/simple_ex1’ directory and try make

run_sim. Notice the use of -W, -R and -T flags.

And again you can try make do, which uses Tcl interface and a Tcl script to make the
simulation. Results are the same as in make run_sim!

8.4 LCD and SerialRx, SerialTx Example

This example is based on Klaus’ Anacomp Example and uses the avr-libc example stdiodemo
to display characters on the LCD.

After performing the build, go to the ‘examples/stdiodemo’ directory and try
./checkdebug.tcl. The following commands are taken from the LCD-specific
‘examples/stdiodemo/checkdebug.tcl’ script:

Chapter 8: Examples 19

Lcd mylcd $ui "lcd0" ".x"

sc AddAsyncMember mylcd

The first command creates a LCD instance mylcd with the name lcd0 The second
command adds the LCD instance to the simulavr timer subsystem as an asynchronous
member. Asynchronous Timer objects are updated every 1ns - which means every iteration
in the simulavr main-loop. All timing is done internally in the ‘lcd.cpp’. The rest of
this simulation script is the normal business create Nets for each LCD pin, wire the Nets
to the CPU pins. The stdiodemo application contains a serial receiver and transmitter
part to receive commands and interprete it and if possible prints it on the LCD or sends
a response to the serial receiver. Transmitter and receiver application are implemented by
polling opposite to the Keyboard example. The components used for the SerialRx/Tx are
described below. Together with the comments in the script you should be able to understand
what happens. Please mind the different names for the functions SetBaudRate and GetPin
for SerialRx and SerialTx! Not optimal but that’s it at the moment...

And you can try make do or make dogdb.

8.5 Keyboard and SerialRx Example

This example is based on Klaus’ Anacomp Example and uses the Atmel application note
AVR313 to convert the incomming data from the keyboard into a serial ASCII stream and
sends this stream via the serial interface. Atmel’s C-Code is ported to a current avr-gcc (4.x)
and a Mega128. For this example only the serial transmitter is used. Atmel implemented
the serial transmitter as interrupt controlled application, opposite to the serial transmitter
/ receiver of the LCD example. Here a polled solution is implemented.

After performing the build, go to the ‘examples/atmel-key’ directory and try
./checkdebug.tcl. This example by itself is good to show how the GUI needs to be setup
to make the Keyboard component work. The output of the keyboard is displayed into
SerialRx component. Let’s look into the simulation script to point out some details:

1. Keyboard

Keyboard kbd $ui "kbd1" ".x"

Keyboard_SetClockFreq kbd 40000

sc Add kbd

These three commands create a Keyboard instance kbd with the name "kbd1". For this
instance the clock timing is set to 40000ns. simulavr internal timing for any asynchronous
activity are multiples of 1ns. The third command adds the keyboard instance to the sim-
ulavr timer. The rest of the commands in ‘examples/atmel-key/checkdebug.tcl’ is the
normal for this simmulation. Create a CPU AtMega128 with 4MHz clock. Create indica-
tors for the digital pins (not necessary but good looking). Create a Net for each signal -
here Clock(key clk), Data(key data), Run-LED(key runLED), Test-Pin(key TestPin), and
Serial Output(key txD0). Wire the pins Net specific. Run-LED and Test-Pin are specific
to the Atmel AP-Note AVR313. The output of the keyboard converter is send to the serial
interface. Based on an "implementation speciality" of simulavr a serial output must be
either set by the AVR program to output or a Pin with a Pull-Up activated has to be wired.

2. SerialRx

SerialRx mysrx $ui "serialRx0" ".x"

Chapter 8: Examples 20

SerialRxBasic_SetBaudRate mysrx 19200

These two commands create a SerialRx instance mysrx with the name "serialRx0".
For this instance the baud rate is set to 19200. This SerialRx is wired to the controller pin,
a display pin by the following commands:

ExtPin exttxD0 $Pin_PULLUP $ui "txD0" ".x"

key_txD0 Add [AvrDevice_GetPin $dev1 "E1"]

key_txD0 Add exttxD0

key_txD0 Add [SerialRxBasic_GetPin mysrx "rx"]

The last command ExtPin shows an alternative default value for txD0-Pin. Here it is
pulled high - what is identical of adding any pull-up resistor to the device pin - no matter
which resistor value is used.

While creating this example, simulavr helped to find the bugs left in the AP-Note.

Chapter 9: Platform Related Notes 21

9 Platform Related Notes

9.1 Gentoo GNU/Linux distribution

To install the AVR cross compiler toolchain, try: crossdev -t AVR

Of course you may need to "emerge crossdev" first ;-)

There have been some problems reported with crossdev. Have a look to build scripts for
Linux provided by the AVR-Freaks. This script has problems with the bfd-libs but the rest
builds easily.

No ebuild for simulavr exists yet, but for me, the standard ./configure && make works.
Let me know if this is not the case for you.

Chapter 10: Limitations 22

10 Limitations

Please be aware, that this chapter is version dependent so compare document version and
software version to ensure both fit together.

10.1 Overall Limitations

This chapters describes an overview of system wide limitations for simulavr. Specific limi-
tations see below.

• The documentation of the simulator provides a wide field of activities to be carried
out.

• Currently only some AVR-CPUs are simulated. While several of the Mega-CPUs can
be simulated by the available Mega128 no Tiny is around. If your Mega-CPU is not
available recompile your project and use a Mega128 CPU for simulation. This works
only if your destination CPU and the Mega128 share identical components. Comparing
of the names e.g. "Timer0" is not sufficient - you need to compare each component for
identical function!

• simulavr simulates an AVR-CPU and a small amount of environment, like IO-network,
some analogue components as well as SPI, ... There is neither a fully description for
the environment available nor comprehensive examples around.

• simulavr makes no validation if the current assembler statement is available for the
selected CPU (e.g. MUL for Tiny,...)

• The current version of simulavr is not validated against the avr-gcc regression tests.

• AVR XMEGA are completely not yet simulated by simulavr.

10.2 CPU Limitations

This chapters describes an overview of limitations for simulavr. Specific limitations see
below. This chapter focuses only on the Mega128 CPU.

The following hardware is not simulated by simulavr:

• TWI Serial Interface

• Analog to Digital Converter Subsystem

• Self-Programming

• Boot Loader Support (incl. Fuses)

• Real Time Clock

• Watchdog Timer

• Sleep-command

• Reset-pin is not available

• With activating the Tx-Pin of an UART the DDR-Register is not set properly to
output. Workaround: Set the Pin’s default value to PULLUP. While the Pin behaves
as Open Colletor (pulls down only) the pull-up "resistor" lets the system run as it
should.

There are 64kByte of external memory automatically attached to the Mega128.

Chapter 10: Limitations 23

While Atmel changed some function details of the EEPROM, Watchdog Timer, Timer
Subsystem, ADC, and USART / USI these subsystems have identical names but differ-
ent functions. Therefore adding a new CPU to simulavr might end in reprogramming a
subsystem!

Chapter 11: Help Wanted 24

11 Help Wanted

There are many things we could use help with on this project. Here are some things that
you may be able to help us out with:

• First paragraph of each chapter in this document (authored in texinfo) is not indented
the way the content paragraphs are...this leads to strange formatting, IMHO. Hints on
how to better structure this document are welcome!

• Running simulavr as part of the WinAVR tool chain.

• Grouping of identical AVR hardware, such as: What kind of timers are around 8bit vs.
16bit, functions, PWM...

The overview of the identical named but different hardware is necessary for the future
development steps.

Index 25

Index

A
avr-gdb, using with . 5

C
Command Line Parameter -u vs. Interpreter . . . 11
CPU Limitations . 22

D
Details of the example GUI . 8

E
Example TCL . 18
Example, Keyboard and SerialRx 19
Example, LCD and SerialRx/SerialTx 18
Example, Python . 18
Example, Simple . 18
Examples . 18

G
Gentoo Platform Notes . 21

Graphic User Interface . 8

H
Help Wanted . 24

I
Installing, Building SimulAVR 13
Introduction . 1
Invoking . 3

L
Limitations . 22

O
Overall Limitations . 22

T
The VPI interface to Verilog 16
Tracing . 6

	Introduction
	Invoking
	Using with avr-gdb
	Tracing
	Graphic User Interface
	Details of the example GUI
	UpdateControl
	Net
	AnalogNet
	LCD
	Keyboard
	SerialRx / SerialTx
	Scope

	Command Line Parameter -u vs. Interpreter

	Building and Installing SimulAVR
	The VPI interface to Verilog
	Usage
	Example iverilog command line
	Bugs and particularities

	Examples
	TCL Anacomp Example
	Python Example
	Simple Example
	LCD and SerialRx, SerialTx Example
	Keyboard and SerialRx Example

	Platform Related Notes
	Gentoo GNU/Linux distribution

	Limitations
	Overall Limitations
	CPU Limitations

	Help Wanted
	Index

