
Cygwin User’s Guide

Cygwin User’s Guide

Copyright (c) 1998, 1999, 2000, 2001, 2002, 2003 Red Hat, Inc.

Table of Contents
1. Cygwin Overview...1

1.1. What is it?...1
1.2. Quick Start Guide for those more experienced with Windows.........................1
1.3. Quick Start Guide for those more experienced with UNIX..............................2
1.4. Are the Cygwin tools free software?..2
1.5. A brief history of the Cygwin project...3
1.6. Highlights of Cygwin Functionality...4

1.6.1. Introduction..4
1.6.2. Supporting both Windows NT and 9x...4
1.6.3. Permissions and Security...5
1.6.4. File Access...6
1.6.5. Text Mode vs. Binary Mode..7
1.6.6. ANSI C Library..7
1.6.7. Process Creation...8
1.6.8. Signals..9
1.6.9. Sockets...9
1.6.10. Select..10

2. Setting Up Cygwin...11

2.1. Internet Setup..11
2.1.1. Download Source...11
2.1.2. Selecting an Install Directory...12
2.1.3. Local Package Directory..12
2.1.4. Connection Method..12
2.1.5. Choosing Mirrors...13
2.1.6. Choosing Packages..13
2.1.7. Download and Installation Progress..14
2.1.8. Icons...14
2.1.9. Post-Install Scripts...14

2.2. Environment Variables..14
2.3. Changing Cygwin’s Maximum Memory..15
2.4. NT security and thentsec usage...16

2.4.1. NT security...17
2.4.2. Process privileges...19
2.4.3. File permissions...20
2.4.4. New since Cygwin release 1.1...22
2.4.5. The mapping leak...24
2.4.6. New acl API...26

iii

2.4.7. New setuid concept..27
2.4.8. New since Cygwin release 1.3.3..29
2.4.9. Special values of user and group ids..30

2.5. Customizing bash..31

3. Using Cygwin..33

3.1. Mapping path names...33
3.1.1. Introduction..33
3.1.2. The Cygwin Mount Table..33
3.1.3. Additional Path-related Information..34

3.2. Text and Binary modes...35
3.2.1. The Issue..35
3.2.2. The default Cygwin behavior...36
3.2.3. Example...37
3.2.4. Binary or text?..37
3.2.5. Programming..38

3.3. File permissions..38
3.4. Special filenames..39

3.4.1. DOS devices...39
3.4.2. POSIX devices...39
3.4.3. The .exe extension..41
3.4.4. The /proc filesystem...41
3.4.5. The @pathnames...42

3.5. The CYGWIN environment variable..42
3.6. Cygwin Utilities..45

3.6.1. cygcheck..45
3.6.2. cygpath...47
3.6.3. dumper...49
3.6.4. getfacl...49
3.6.5. kill ..50
3.6.6. mkgroup...52
3.6.7. mkpasswd...53
3.6.8. mount...55

3.6.8.1. Using mount..56
3.6.8.2. Cygdrive mount points..58
3.6.8.3. Limitations..58

3.6.9. passwd..59
3.6.10. ps..60
3.6.11. regtool..61
3.6.12. setfacl...63
3.6.13. ssp..65

iv

3.6.14. strace..68
3.6.15. umount...70

3.7. Using Cygwin effectively with Windows...70
3.7.1. Pathnames..71
3.7.2. Console Programs..72
3.7.3. Cygwin and Windows Networking..72
3.7.4. The cygutils package..73
3.7.5. Creating shortcuts with cygutils...73
3.7.6. Printing with cygutils...73

4. Programming with Cygwin ...75

4.1. Using GCC with Cygwin..75
4.1.1. Console Mode Applications...75
4.1.2. GUI Mode Applications...75

4.2. Debugging Cygwin Programs...78
4.3. Building and Using DLLs...79

4.3.1. Building DLLs...80
4.3.2. Linking Against DLLs...81

4.4. Defining Windows Resources...82

v

vi

List of Examples
2-1. /etc/passwd..21
2-2. /etc/group..22
2-3. /etc/passwd:..23
2-4. /etc/group:...23
2-5. /etc/passwd..24
2-6. /etc/group..24
3-1. Displaying the current set of mount points...34
3-2. Using @pathname..42
3-3. Examplecygcheckusage...46
3-4. Examplecygpathusage...48
3-5. Using the kill command..51
3-6. Setting up the groups file for local accounts...53
3-7. Setting up the passwd file for local accounts..54
3-8. Using an alternate home root..55
3-9. Displaying the current set of mount points...56
3-10. Adding mount points..56
3-11. Changing the default prefix..58
4-1. Building Hello World with GCC..75
4-2. Compiling with -g...78
4-3. "break" in gdb...79
4-4. Debugging with command line arguments...79

vii

viii

Chapter 1. Cygwin Overview

1.1. What is it?
Cygwin is a Linux-like environment for Windows. It consists of a DLL (cygwin1.dll),
which acts as an emulation layer providing substantial POSIX (http://www.pasc.
org/#POSIX) (Portable Operating System Interface) system call functionality, and a col-
lection of tools, which provide a Linux look and feel. The Cygwin DLL works with all
x86 versions of Windows since Windows 95.

With Cygwin installed, users have access to many standard UNIX utilities. They can
be used from one of the provided shells such asbashor from the Windows Command
Prompt. Additionally, programmers may write Win32 console or GUI applications that
make use of the standard Microsoft Win32 API and/or the Cygwin API. As a result, it is
possible to easily port many significant UNIX programs without the need for extensive
changes to the source code. This includes configuring and building most of the available
GNU software (including the development tools included with the Cygwin distribution).

1.2. Quick Start Guide for those more
experienced with Windows

If you are new to the world of UNIX, you may find it difficult to understand at first.
This guide is not meant to be comprehensive, so we recommend that you use the many
available Internet resources to become acquainted with UNIX basics (search for "UNIX
basics" or "UNIX tutorial").

To install a basic Cygwin environment, run thesetup.exeprogram and clickNext at
each page. The default settings are correct for most users. If you want to know more
about what each option means, seeSection 2.1. Usesetup.exeany time you want to
update or install a Cygwin package. If you are installing Cygwin for a specific purpose,
use it to install the tools that you need. For example, if you want to compile C++ pro-
grams, you need the gcc-g++ package and probably a text editor like nano. When run-
ning setup.exe, clicking on categories and packages in the package installation screen
will provide you with the ability to control what is installed or updated.

Another option is to install everything by clicking on theDefault field next to theAll

category. However, be advised that this will download and install several hundreds of

1

http://www.pasc.org/#POSIX
http://www.pasc.org/#POSIX

Chapter 1. Cygwin Overview

megabytes of software to your computer. The best plan is probably to click on individual
categories and install either entire categories or packages from the categories themselves.

Developers coming from a Windows background will find a set of tools capable of writ-
ing console or GUI executables that rely on the Microsoft Win32 API. Thedlltool util-
ity may be used to write Windows Dynamically Linked Libraries (DLLs). The resource
compilerwindres is also provided. All tools may be used from the Microsoft command
prompt, with full support for normal Windows pathnames.

1.3. Quick Start Guide for those more
experienced with UNIX

If you are an experienced UNIX user who misses a powerful command-line environ-
ment, you will enjoy Cygwin. Note that there are some workarounds that cause Cygwin
to behave differently than most UNIX-like operating systems; these are described in
more detail inSection 3.7.

Any time you want to update or install a Cygwin package, use the graphicalsetup.exe
program. By default,setup.exeonly installs a minimal set of packages, so look around
and choose your favorite utilities on the package selection screen. You may also search
for specfic tools on the Cygwin website’s Setup Package Search (http://cygwin.com/
packages/) For more information about what each option insetup.exemeans, seeSec-
tion 2.1.

Another option is to install everything by clicking on theDefault field next to theAll

category. However, be advised that this will download and install several hundreds of
megabytes of software to your computer. The best plan is probably to click on individual
categories and install either entire categories or packages from the categories themselves.

Developers coming from a UNIX background will find a set of utilities they are already
comfortable using, including a working UNIX shell. The compiler tools are the standard
GNU compilers most people will have previously used under UNIX, only ported to the
Windows host. Programmers wishing to port UNIX software to Windows NT or 9x will
find that the Cygwin library provides an easy way to port many UNIX packages, with
only minimal source code changes.

1.4. Are the Cygwin tools free software?
Yes. Parts are GNU (http://www.gnu.org/) software (gcc, gas, ld, etc.), parts are

2

http://cygwin.com/packages/
http://cygwin.com/packages/
http://www.gnu.org/

Chapter 1. Cygwin Overview

covered by the standard X11 license (http://www.x.org/Downloads_terms.html),
some of it is public domain, some of it was written by Red Hat and placed under the GNU
General Public License (http://www.gnu.org/licenses/gpl.html) (GPL). None of
it is shareware. You don’t have to pay anyone to use it but you should be sure to read the
copyright section of the FAQ for more information on how the GNU GPL may affect
your use of these tools. If you intend to port a proprietary application using the Cygwin
library, you may want the Cygwin proprietary-use license. For more information about
the proprietary-use license, please go tohttp://www.redhat.com/software/tools/
cygwin/ . Customers of the native Win32 GNUPro should feel free to submit bug reports
and ask questions through the normal channels. All other questions should be sent to the
project mailing list <cygwin@cygwin.com >.

1.5. A brief history of the Cygwin project

Note: A more complete historical look Cygwin is Geoffrey J. Noer’s 1998 paper,
"Cygwin32: A Free Win32 Porting Layer for UNIX® Applications" which can
be found at the 2nd USENIX Windows NT Symposium Online Proceedings
(http://www.usenix.org/publications/library/proceedings/usenix-nt98/
technical.html).

Cygwin began development in 1995 at Cygnus Solutions (now part of Red Hat Soft-
ware). The first thing done was to enhance the development tools (gcc, gdb, gas, etc.)
so that they could generate and interpret Win32 native object files. The next task was
to port the tools to Win NT/9x. We could have done this by rewriting large portions of
the source to work within the context of the Win32 API. But this would have meant
spending a huge amount of time on each and every tool. Instead, we took a substantially
different approach by writing a shared library (the Cygwin DLL) that adds the neces-
sary UNIX-like functionality missing from the Win32 API (fork , spawn , signals ,
select , sockets , etc.). We call this new interface the Cygwin API. Once written, it
was possible to build working Win32 tools using UNIX-hosted cross-compilers, linking
against this library.

From this point, we pursued the goal of producing native tools capable of rebuilding
themselves under Windows 9x and NT (this is often called self-hosting). Since neither
OS ships with standard UNIX user tools (fileutils, textutils, bash, etc...), we had to get
the GNU equivalents working with the Cygwin API. Most of these tools were previously
only built natively so we had to modify their configure scripts to be compatible with

3

http://www.x.org/Downloads_terms.html
http://www.gnu.org/licenses/gpl.html
http://www.redhat.com/software/tools/cygwin/
http://www.redhat.com/software/tools/cygwin/
http://www.usenix.org/publications/library/proceedings/usenix-nt98/technical.html
http://www.usenix.org/publications/library/proceedings/usenix-nt98/technical.html

Chapter 1. Cygwin Overview

cross-compilation. Other than the configuration changes, very few source-level changes
had to be made. Running bash with the development tools and user tools in place, Win-
dows 9x and NT look like a flavor of UNIX from the perspective of the GNU configure
mechanism. Self hosting was achieved as of the beta 17.1 release in October 1996.

The entire Cygwin toolset was available as a monolithic install.
In April 2000, the project announced a New Cygwin Net Release
(http://www.cygwin.com/ml/cygwin/2000-04/msg00269.html) which provided
the native Win32 programsetup.exeto install and upgrade each package separately.
Since then, the Cygwin DLL andsetup.exehave seen continuous development.

1.6. Highlights of Cygwin Functionality

1.6.1. Introduction
When a binary linked against the library is executed, the Cygwin DLL is loaded into
the application’s text segment. Because we are trying to emulate a UNIX kernel which
needs access to all processes running under it, the first Cygwin DLL to run creates shared
memory areas that other processes using separate instances of the DLL can access. This
is used to keep track of open file descriptors and assist fork and exec, among other
purposes. In addition to the shared memory regions, every process also has a per_process
structure that contains information such as process id, user id, signal masks, and other
similar process-specific information.

The DLL is implemented using the Win32 API, which allows it to run on all Win32
hosts. Because processes run under the standard Win32 subsystem, they can access both
the UNIX compatibility calls provided by Cygwin as well as any of the Win32 API
calls. This gives the programmer complete flexibility in designing the structure of their
program in terms of the APIs used. For example, they could write a Win32-specific GUI
using Win32 API calls on top of a UNIX back-end that uses Cygwin.

Early on in the development process, we made the important design decision that it
would not be necessary to strictly adhere to existing UNIX standards like POSIX.1 if
it was not possible or if it would significantly diminish the usability of the tools on
the Win32 platform. In many cases, an environment variable can be set to override the
default behavior and force standards compliance.

4

http://www.cygwin.com/ml/cygwin/2000-04/msg00269.html

Chapter 1. Cygwin Overview

1.6.2. Supporting both Windows NT and 9x
While Windows 95 and Windows 98 are similar enough to each other that we can safely
ignore the distinction when implementing Cygwin, Windows NT is an extremely differ-
ent operating system. For this reason, whenever the DLL is loaded, the library checks
which operating system is active so that it can act accordingly.

In some cases, the Win32 API is only different for historical reasons. In this situation,
the same basic functionality is available under Windows 9x and NT but the method used
to gain this functionality differs. A trivial example: in our implementation of uname,
the library examines the sysinfo.dwProcessorType structure member to figure out the
processor type under Windows 9x. This field is not supported in NT, which has its own
operating system-specific structure member called sysinfo.wProcessorLevel.

Other differences between NT and 9x are much more fundamental in nature. The best
example is that only NT provides a security model.

1.6.3. Permissions and Security
Windows NT includes a sophisticated security model based on Access Control Lists
(ACLs). Cygwin maps Win32 file ownership and permissions to the more standard, older
UNIX model by default. Cygwin version 1.1 introduces support for ACLs according
to the system calls used on newer versions of Solaris. This ability is used when the
‘ntsec’ feature is switched on which is described in another chapter. The chmod call
maps UNIX-style permissions back to the Win32 equivalents. Because many programs
expect to be able to find the /etc/passwd and /etc/group files, we provide utilities that can
be used to construct them from the user and group information provided by the operating
system.

Under Windows NT, the administrator is permitted to chown files. There is no mecha-
nism to support the setuid concept or API call since Cygwin version 1.1.2. With version
1.1.3 Cygwin introduces a mechanism for setting real and effective UIDs under Win-
dows NT/W2K. This is described in the ntsec section.

Under Windows 9x, the situation is considerably different. Since a security model is not
provided, Cygwin fakes file ownership by making all files look like they are owned by
a default user and group id. As under NT, file permissions can still be determined by
examining their read/write/execute status. Rather than return an unimplemented error,
under Windows 9x, the chown call succeeds immediately without actually performing
any action whatsoever. This is appropriate since essentially all users jointly own the files
when no concept of file ownership exists.

5

Chapter 1. Cygwin Overview

It is important that we discuss the implications of our "kernel" using shared memory
areas to store information about Cygwin processes. Because these areas are not yet pro-
tected in any way, in principle a malicious user could modify them to cause unexpected
behavior in Cygwin processes. While this is not a new problem under Windows 9x (be-
cause of the lack of operating system security), it does constitute a security hole under
Windows NT. This is because one user could affect the Cygwin programs run by an-
other user by changing the shared memory information in ways that they could not in
a more typical WinNT program. For this reason, it is not appropriate to use Cygwin in
high-security applications. In practice, this will not be a major problem for most uses of
the library.

1.6.4. File Access
Cygwin supports both Win32- and POSIX-style paths, using either forward or back
slashes as the directory delimiter. Paths coming into the DLL are translated from Win32
to POSIX as needed. As a result, the library believes that the file system is a POSIX-
compliant one, translating paths back to Win32 paths whenever it calls a Win32 API
function. UNC pathnames (starting with two slashes) are supported.

The layout of this POSIX view of the Windows file system space is stored in the Win-
dows registry. While the slash (’/’) directory points to the system partition by default,
this is easy to change with the Cygwin mount utility. In addition to selecting the slash
partition, it allows mounting arbitrary Win32 paths into the POSIX file system space.
Many people use the utility to mount each drive letter under the slash partition (e.g. C:\
to /c, D:\ to /d, etc...).

The library exports several Cygwin-specific functions that can be used by external pro-
grams to convert a path or path list from Win32 to POSIX or vice versa. Shell scripts
and Makefiles cannot call these functions directly. Instead, they can do the same path
translations by executing the cygpath utility program that we provide with Cygwin.

Win32 file systems are case preserving but case insensitive. Cygwin does not currently
support case distinction because, in practice, few UNIX programs actually rely on it.
While we could mangle file names to support case distinction, this would add unneces-
sary overhead to the library and make it more difficult for non-Cygwin applications to
access those files.

Symbolic links are emulated by files containing a magic cookie followed by the path
to which the link points. They are marked with the System attribute so that only files
with that attribute have to be read to determine whether or not the file is a symbolic link.
Hard links are fully supported under Windows NT on NTFS file systems. On a FAT file

6

Chapter 1. Cygwin Overview

system, the call falls back to simply copying the file, a strategy that works in many cases.

The inode number for a file is calculated by hashing its full Win32 path. The inode
number generated by the stat call always matches the one returned in d_ino of the dirent
structure. It is worth noting that the number produced by this method is not guaranteed
to be unique. However, we have not found this to be a significant problem because of
the low probability of generating a duplicate inode number.

Chroot is supported since release 1.1.3. Note that chroot isn’t supported native by Win-
dows. This implies some restrictions. First of all, the chroot call isn’t a privileged call.
Each user may call it. Second, the chroot environment isn’t safe against native windows
processes. If you want to support a chroot environment as, for example, by allowing an
anonymous ftp with restricted access, you’ll have to care that only native Cygwin appli-
cations are accessible inside of the chroot environment. Since that applications are only
using the Cygwin POSIX API to access the file system their access can be restricted as
it is intended. This includes not only POSIX paths but Win32 paths (containing drive
letter and/or backslashes) and CIFS paths (//server/share or \\server\share) as well.

1.6.5. Text Mode vs. Binary Mode
Interoperability with other Win32 programs such as text editors was critical to the suc-
cess of the port of the development tools. Most Red Hat customers upgrading from the
older DOS-hosted toolchains expected the new Win32-hosted ones to continue to work
with their old development sources.

Unfortunately, UNIX and Win32 use different end-of-line terminators in text files. Con-
sequently, carriage-return newlines have to be translated on the fly by Cygwin into a
single newline when reading in text mode.

This solution addresses the compatibility requirement at the expense of violating the
POSIX standard that states that text and binary mode will be identical. Consequently,
processes that attempt to lseek through text files can no longer rely on the number of
bytes read as an accurate indicator of position in the file. For this reason, the CYGWIN
environment variable can be set to override this behavior.

1.6.6. ANSI C Library
We chose to include Red Hat’s own existing ANSI C library "newlib" as part of the
library, rather than write all of the lib C and math calls from scratch. Newlib is a BSD-

7

Chapter 1. Cygwin Overview

derived ANSI C library, previously only used by cross-compilers for embedded systems
development.

The reuse of existing free implementations of such things as the glob, regexp, and getopt
libraries saved us considerable effort. In addition, Cygwin uses Doug Lea’s free malloc
implementation that successfully balances speed and compactness. The library accesses
the malloc calls via an exported function pointer. This makes it possible for a Cygwin
process to provide its own malloc if it so desires.

1.6.7. Process Creation
The fork call in Cygwin is particularly interesting because it does not map well on top
of the Win32 API. This makes it very difficult to implement correctly. Currently, the
Cygwin fork is a non-copy-on-write implementation similar to what was present in early
flavors of UNIX.

The first thing that happens when a parent process forks a child process is that the parent
initializes a space in the Cygwin process table for the child. It then creates a suspended
child process using the Win32 CreateProcess call. Next, the parent process calls setjmp
to save its own context and sets a pointer to this in a Cygwin shared memory area (shared
among all Cygwin tasks). It then fills in the child’s .data and .bss sections by copying
from its own address space into the suspended child’s address space. After the child’s
address space is initialized, the child is run while the parent waits on a mutex. The child
discovers it has been forked and longjumps using the saved jump buffer. The child then
sets the mutex the parent is waiting on and blocks on another mutex. This is the signal for
the parent to copy its stack and heap into the child, after which it releases the mutex the
child is waiting on and returns from the fork call. Finally, the child wakes from blocking
on the last mutex, recreates any memory-mapped areas passed to it via the shared area,
and returns from fork itself.

While we have some ideas as to how to speed up our fork implementation by reduc-
ing the number of context switches between the parent and child process, fork will al-
most certainly always be inefficient under Win32. Fortunately, in most circumstances the
spawn family of calls provided by Cygwin can be substituted for a fork/exec pair with
only a little effort. These calls map cleanly on top of the Win32 API. As a result, they
are much more efficient. Changing the compiler’s driver program to call spawn instead
of fork was a trivial change and increased compilation speeds by twenty to thirty percent
in our tests.

However, spawn and exec present their own set of difficulties. Because there is no way
to do an actual exec under Win32, Cygwin has to invent its own Process IDs (PIDs). As

8

Chapter 1. Cygwin Overview

a result, when a process performs multiple exec calls, there will be multiple Windows
PIDs associated with a single Cygwin PID. In some cases, stubs of each of these Win32
processes may linger, waiting for their exec’d Cygwin process to exit.

1.6.8. Signals
When a Cygwin process starts, the library starts a secondary thread for use in signal
handling. This thread waits for Windows events used to pass signals to the process.
When a process notices it has a signal, it scans its signal bitmask and handles the signal
in the appropriate fashion.

Several complications in the implementation arise from the fact that the signal handler
operates in the same address space as the executing program. The immediate conse-
quence is that Cygwin system functions are interruptible unless special care is taken to
avoid this. We go to some lengths to prevent the sig_send function that sends signals
from being interrupted. In the case of a process sending a signal to another process, we
place a mutex around sig_send such that sig_send will not be interrupted until it has
completely finished sending the signal.

In the case of a process sending itself a signal, we use a separate semaphore/event pair in-
stead of the mutex. sig_send starts by resetting the event and incrementing the semaphore
that flags the signal handler to process the signal. After the signal is processed, the sig-
nal handler signals the event that it is done. This process keeps intraprocess signals
synchronous, as required by POSIX.

Most standard UNIX signals are provided. Job control works as expected in shells that
support it.

1.6.9. Sockets
Socket-related calls in Cygwin simply call the functions by the same name in Winsock,
Microsoft’s implementation of Berkeley sockets. Only a few changes were needed to
match the expected UNIX semantics - one of the most troublesome differences was
that Winsock must be initialized before the first socket function is called. As a result,
Cygwin has to perform this initialization when appropriate. In order to support sockets
across fork calls, child processes initialize Winsock if any inherited file descriptor is a
socket.

Unfortunately, implicitly loading DLLs at process startup is usually a slow affair. Be-
cause many processes do not use sockets, Cygwin explicitly loads the Winsock DLL the

9

Chapter 1. Cygwin Overview

first time it calls the Winsock initialization routine. This single change sped up GNU
configure times by thirty percent.

1.6.10. Select
The UNIX select function is another call that does not map cleanly on top of the Win32
API. Much to our dismay, we discovered that the Win32 select in Winsock only worked
on socket handles. Our implementation allows select to function normally when given
different types of file descriptors (sockets, pipes, handles, and a custom /dev/windows
Windows messages pseudo-device).

Upon entry into the select function, the first operation is to sort the file descriptors into
the different types. There are then two cases to consider. The simple case is when at
least one file descriptor is a type that is always known to be ready (such as a disk file).
In that case, select returns immediately as soon as it has polled each of the other types
to see if they are ready. The more complex case involves waiting for socket or pipe
file descriptors to be ready. This is accomplished by the main thread suspending itself,
after starting one thread for each type of file descriptor present. Each thread polls the
file descriptors of its respective type with the appropriate Win32 API call. As soon as a
thread identifies a ready descriptor, that thread signals the main thread to wake up. This
case is now the same as the first one since we know at least one descriptor is ready. So
select returns, after polling all of the file descriptors one last time.

10

Chapter 2. Setting Up Cygwin

2.1. Internet Setup
To install the Cygwin net release, go tohttp://cygwin.com/ and click on "Install
Cygwin Now!" (http://cygwin.com/setup.exe). This will download a GUI installer
calledsetup.exewhich can be run to download a complete cygwin installation via the
internet. Follow the instructions on each screen to install Cygwin.

The setup.exe installer is designed to be easy for new users to understand while
remaining flexible for the experienced. The volunteer development team is constantly
working onsetup.exe; before requesting a new feature, check the wishlist in the CVS
README (http://sources.redhat.com/cgi-bin/cvsweb.cgi/setup/README?
cvsroot=cygwin-apps&rev=2). It may already be present in the CVS version!

Since the default value for each option is the logical choice for most installations, you
can get a working minimal Cygwin environment installed by simply clicking theNext

button at each page. The only exception to this is choosing a Cygwin mirror, which you
can choose by experimenting with those listed athttp://cygwin.com/mirrors.html .
For more details about each of page of thesetup.exeinstallation, read on below. Please
note that this guide assumes that you have a basic understanding of Unix (or a Unix-
like OS). If you are new to Unix, you will also want to make use of other resources
(http://www.google.com/search?q=new+to+unix).

2.1.1. Download Source
Cygwin uses packages to manage installing various software. When the default
Install from Internet option is chosen,setup.execreates a local directory to
store the packages before actually installing the contents.Download from Internet

performs only the first part (storing the packages locally), whileInstall from

Local Directory performs only the second (installing the contents of the packages).

TheDownload from Internet option is mainly for creating a base Cygwin package
tree on one computer for installation on several machines withInstall from Local

Directory ; copy the entire local package tree to another machine with the directory
tree intact. For example, you might create aC:\cache\ directory and placesetup.exe
in it. Run setup.exeto Install from Internet or Download from Internet ,
then copy the wholeC:\cache\ to each machine and instead chooseInstall from

Local Directory . Unfortunatelysetup.exedoes not yet support unattended installs.

11

http://cygwin.com/
http://cygwin.com/setup.exe
http://sources.redhat.com/cgi-bin/cvsweb.cgi/setup/README?cvsroot=cygwin-apps&rev=2
http://sources.redhat.com/cgi-bin/cvsweb.cgi/setup/README?cvsroot=cygwin-apps&rev=2
http://cygwin.com/mirrors.html
http://www.google.com/search?q=new+to+unix

Chapter 2. Setting Up Cygwin

Though this provides some basic mirroring functionality, if you are managing a wide
Cygwin installation, to keep up to date we recommend using a mirroring tool such as
wget. A helpful user on the Cygwin mailing list created a simple demonstration script
to accomplish this; search the list formkcygwgetfor ideas.

2.1.2. Selecting an Install Directory
The Root Directory for Cygwin (defaultC:\cygwin) will become / within your
Cygwin installation. You must have write access to the parent directory, and any ACLs
on the parent directory will determine access to installed files.

The Install For options ofAll Users or Just Me should always be left on the
default All Users , unless you do not have write access toHKEY_LOCAL_MACHINE

in the registry or the All Users Start Menu. This is true even if you are the only user
planning to use Cygwin on the machine. SelectingJust Me will cause problems for
programs such ascrond andsshd. If you do not have the necessary permissions, but
still want to use these programs, consult the Cygwin mailing list archives about others’
experiences.

TheDefault Text File Type should be left onUnix (that is,\n) unless you have
a very good reason to switch it toDOS(that is,\r\n).

2.1.3. Local Package Directory
The Local Package Directory is the cache wheresetup.exestores the packages
before they are installed. The cache must not be the same folder as the Cygwin root.
Within the cache, a separate directory is created for each Cygwin mirror, which allows
setup.exeto use multiple mirrors and custom packages. After installing Cygwin, the
cache is no longer necessary, but you may want to retain the packages as backups, for
installing Cygwin to another system, or in case you need to reinstall a package.

2.1.4. Connection Method
The Direct Connection method of downloading will directly download the pack-
ages, while the IE5 method will leverage your IE5 cache for performance. If your or-
ganisation uses a proxy server or auto-configuration scripts, the IE5 method also uses
these settings. If you have a proxy server, you can manually type it into theUse Proxy

12

Chapter 2. Setting Up Cygwin

section. Unfortunately,setup.exedoes not currently support password authorization for
proxy servers.

2.1.5. Choosing Mirrors
Since there is no way of knowing from where you will be downloading Cygwin, you
need to choose at least one mirror site. Cygwin mirrors are geographically distributed
around the world; check the list athttp://cygwin.com/mirrors.html to find one
near you. You can select multiple mirrors by holding downCTRLand clicking on each
one. If you have the URL of an unlisted mirror (for example, if your organization has an
internal Cygwin mirror) you can add it.

2.1.6. Choosing Packages
For each selected mirror site,setup.exedownloads a small text file calledsetup.bz2

that contains a list of packages available from that site along with some basic information
about each package whichsetup.exeparses and uses to create the chooser window. For
details about the format of this file, see the setup.exe homepage (http://sources.
redhat.com/cygwin-apps/setup.html).

The chooser is the most complex part ofsetup.exe. Packages are grouped into cate-
gories, and one package may belong to multiple categories (assigned by the volunteer
package maintainer). Each package can be found under any of those categories in the
heirarchial chooser view. By defaultsetup.exewill install only the packages in theBase

category and their dependencies, resulting in a minimal Cygwin installation. However,
this will not include many commonly used tools such asgcc (which you will find in
the Devel category). Sincesetup.exeautomatically selects dependencies, be careful
not to unselect any required packages. In particular, everything in theBase category is
required.

You can changesetup.exe’s view style, which is helpful if you know the name of a
package you want to install but not which category it is in. Click on theView button and
it will rotate betweenCategory (the default),Full (all packages), andPartial (only
packages to be upgraded). If you are familiar with Unix, you will probably want to at
least glance through theFull listing for your favorite tools.

Once you have an existing Cygwin installation, thesetup.exechooser is also used
to manage your Cygwin installation. Information on installed packages is kept in the
/etc/setup/ directory of your Cygwin installation; ifsetup.execannot find this di-
rectory it will act just like you had no Cygwin installation. Ifsetup.exefinds a newer

13

http://cygwin.com/mirrors.html
http://sources.redhat.com/cygwin-apps/setup.html
http://sources.redhat.com/cygwin-apps/setup.html

Chapter 2. Setting Up Cygwin

version of an installed package available, it will automatically mark it to be upgraded.
To Uninstall , Reinstall , or get theSource for an existing package, click onKeep

to toggle it. Also, to avoid the need to reboot after upgrading, make sure to close all
Cygwin windows and stop all Cygwin processes beforesetup.exebegins to install the
upgraded package.

The final feature of thesetup.exechooser is forPrevious andExperimental pack-
ages. By default the chooser shows only the current version of each package, though
mirrors have at least one previous version and occasionally there is a testing or beta ver-
sion of a package available. To see these package, click on thePrev or Exp radio button.
Be warned, however, that the next time you runsetup.exeit will try to replace old or
experimental versions with the current stable version.

2.1.7. Download and Installation Progress
First,setup.exewill download all selected packages to the local directory chosen earlier.
Before installing,setup.exeperforms a checksum on each package. If the local direc-
tory is a slow medium (such as a network drive) this can take a long time. During the
download and installation,setup.exeshow progress bars for the current task and total
remaining disk space.

2.1.8. Icons
You may choose to install shortcuts on the Desktop and/or Start Menu to start abash

shell. If you prefer to use a different shell or the native Windows version ofrxvt , you
can use these shortcuts as a guide to creating your own.

2.1.9. Post-Install Scripts
Last of all,setup.exewill run any post-install scripts to finish correctly setting up in-
stalled packages. Since each script is run separately, several windows may pop up. If
you are interested in what is being done, see the Cygwin Package Contributor’s Guide
at http://cygwin.com/setup.html When the last post-install script is completed,
setup.exewill display a box announcing the completion. A few packages, such as the
OpenSSH server, require some manual site-specific configuration. Relevant documenta-
tion can be found in the/usr/doc/Cygwin/ directory.

14

http://cygwin.com/setup.html

Chapter 2. Setting Up Cygwin

2.2. Environment Variables
Before starting bash, you may set some environment variables. A .bat file is provided
where the most important ones are set before bash in launched. This is the safest way
to launch bash initially. The .bat file is installed in the root directory that you specified
during setup and pointed to in the Start Menu under the "Cygwin" option. You can edit
it this file your liking.

The CYGWIN variable is used to configure many global settings for the Cygwin runtime
system. Initially you can leave CYGWIN unset or set it totty (e.g. to support job control
with ^Z etc...) using a syntax like this in the DOS shell, before launching bash.

C:\> set CYGWIN=tty notitle glob

The PATH environment variable is used by Cygwin applications as a list of directories
to search for executable files to run. This environment variable is converted from Win-
dows format (e.g.C:\WinNT\system32;C:\WinNT) to UNIX format (e.g.,/WinNT/
system32:/WinNT) when a Cygwin process first starts. Set it so that it contains at least
thex:\cygwin\bin directory where "x:\cygwin is the "root" of your cygwin installa-
tion if you wish to use cygwin tools outside of bash.

The HOME environment variable is used by many programs to determine the location of
your home directory and we recommend that it be defined. This environment variable is
also converted from Windows format when a Cygwin process first starts. Set it to point
to your home directory before launching bash.

The TERM environment variable specifies your terminal type. It is automatically set to
cygwin if you have not set it to something else.

The LD_LIBRARY_PATH environment variable is used by the Cygwin function
dlopen () as a list of directories to search for .dll files to load. This environment
variable is converted from Windows format to UNIX format when a Cygwin process
first starts. Most Cygwin applications do not make use of thedlopen () call and do
not need this variable.

2.3. Changing Cygwin’s Maximum Memory
By default no Cygwin program can allocate more than 384 MB of memory
(program+data). You should not need to change this default in most circumstances.
However, if you need to use more real or virtual memory in your machine you may add

15

Chapter 2. Setting Up Cygwin

an entry in the either theHKEY_LOCAL_MACHINE(to change the limit for all users) or
HKEY_CURRENT_USER(for just the current user) section of the registry.

Add theDWORDvalueheap_chunk_in_mb and set it to the desired memory limit in
decimal MB. It is preferred to do this in Cygwin using theregtool program included in
the Cygwin package. (For more information aboutregtool or the other Cygwin utilities,
seeSection 3.6or use each the--help option of each util.) You should always be care-
ful when usingregtool since damaging your system registry can result in an unusable
system. This example sets memory limit to 1024 MB:

regtool -i set /HKLM/Software/Cygnus\ Solutions/Cygwin/heap_chunk_in_mb 1024
regtool -v list /HKLM/Software/Cygnus\ Solutions/Cygwin

Exit all running Cygwin processes and restart them. Memory can be allocated up to the
size of the system swap space minus any the size of any running processes. The system
swap should be at least as large as the physically installed RAM and can be modified
under the System category of the Control Panel.

Here is a small program written by DJ Delorie that tests the memory allocation limit on
your system:

main()
{

unsigned int bit=0x40000000, sum=0;
char *x;

while (bit > 4096)
{

x = malloc(bit);
if (x)
sum += bit;
bit >>= 1;

}
printf("%08x bytes (%.1fMb)\n", sum, sum/1024.0/1024.0);
return 0;

}

You can compile this program using:

gcc max_memory.c -o max_memory.exe

Run the program and it will output the maximum amount of allocatable memory.

16

Chapter 2. Setting Up Cygwin

2.4. NT security and the ntsec usage
The design goal of ntsec is to get a more UNIX like permission structure based upon the
security features of Windows NT. To describe the changes, I will give a short overview
of NT security in chapter one.

Chapter two discusses the changes in ntsec related to privileges on processes.

Chapter three shows the basics of UNIX like setting of file permissions.

Chapter four talks about the advanced settings introduced in release 1.1

Chapter five illustrates the permission mapping leak of Windows NT.

Chapter six describes the new support of a setuid concept introduced with release 1.1.3.

Chapter six describes in short the new acl API since release 1.1

The setting of UNIX like object permissions is controlled by the new CYGWIN variable
setting(no)ntsec .

2.4.1. NT security
The NT security allows a process to allow or deny access of different kind to ‘objects’.
‘Objects’ are files, processes, threads, semaphores, etc.

The main data structure of NT security is the ‘security descriptor’ (SD) structure. It ex-
plains the permissions, that are granted (or denied) to an object and contains information,
that is related to so called ‘security identifiers’ (SID).

A SID is a unique identifier for users, groups and domains. SIDs are comparable to
UNIX UIDs and GIDs, but are more complicated because they are unique across net-
works. Example:

SID of a system ‘foo’:

S-1-5-21-165875785-1005667432-441284377

SID of a user ‘johndoe’ of the system ‘foo’:

S-1-5-21-165875785-1005667432-441284377-1023

The above example shows the convention for printing SIDs. The leading ‘S’ should show
that it is a SID. The next number is a version number which is always 1. The next number
is the so called ‘top-level authority’ that identifies the source that issued the SID.

17

Chapter 2. Setting Up Cygwin

While each system in a NT network has it’s own SID, the situation is modified in NT
domains: The SID of the domain controller is the base SID for each domain user. If an
NT user has one account as domain user and another account on his local machine, this
accounts are under any circumstances DIFFERENT, regardless of the usage of the same
user name and password!

SID of a domain ‘bar’:

S-1-5-21-186985262-1144665072-740312968

SID of a user ‘johndoe’ in the domain ‘bar’:

S-1-5-21-186985262-1144665072-740312968-1207

The last part of the SID, the so called ‘relative identifier’ (RID), is by default used as
UID and/or GID under cygwin. As the name and the above example implies, this id is
unique only relative to one system or domain.

Note, that it’s possible, that an user has the same RID on two different systems. The
resulting SIDs are nevertheless different, so the SIDs are representing different users in
an NT network.

There is a big difference between UNIX IDs and NT SIDs, the existence of the so called
‘well known groups’. For example UNIX has no GID for the group of ‘all users’. NT
has an SID for them, called ‘Everyone’ in the English versions. The SIDs of well-known
groups are not unique across an NT network but their meanings are unmistakable. Ex-
amples of well-known groups:

everyone S-1-1-0
creator/owner S-1-3-0
batch process (via ‘at’) S-1-5-3
authenticated users S-1-5-11
system S-1-5-18

The last important group of SIDs are the ‘predefined groups’. This groups are used
mainly on systems outside of domains to simplify the administration of user permissions.
The corresponding SIDs are not unique across the network so they are interpreted only
locally:

administrators S-1-5-32-544
users S-1-5-32-545
guests S-1-5-32-546
...

18

Chapter 2. Setting Up Cygwin

Now, how are permissions given to objects? A process may assign an SD to the object.
The SD of an object consists of three parts:

• the SID of the owner
• the SID of the group
• a list of SIDs with their permissions, called ‘access control list’ (ACL)

UNIX is able to create three different permissions, the permissions for the owner, for the
group and for the world. In contrast the ACL has a potentially infinite number of mem-
bers. Every member is a so called ‘access control element’ (ACE). An ACE contains
three parts:

• the type of the ACE
• permissions, described with a DWORD
• the SID, for which the above mentioned permissions are set

The two important types of ACEs are the ‘access allowed ACE’ and the ‘access denied
ACE’. The ntsec functionality only used ‘access allowed ACEs’ up to Cygwin version
1.1.0. Later versions also use ‘access denied ACEs’ to reflect the UNIX permissions as
well as possible.

The possible permissions on objects are more detailed than in UNIX. For example, the
permission to delete an object is different from the write permission.

With the aforementioned method NT is able to grant or revoke permissions to objects in a
far more specific way. But what about cygwin? In a POSIX environment it would be fine
to have the security behavior of a POSIX system. The NT security model is MOSTLY
able to reproduce the POSIX model. The ntsec method tries to do this in cygwin.

You ask "Mostly? Why mostly???" Because there’s a leak in the NT model. I will de-
scribe that in detail in chapter 4.

Creating explicit object security is not that easy so you will often see only two simple
variations in use:

• default permissions, computed by the operating system
• each permission to everyone

For parameters to functions that create or open securable objects another data structure
is used, the ‘security attributes’ (SA). This structure contains an SD and a flag that
specifies whether the returned handle to the object is inherited to child processes or not.
This property is not important for ntsec so in this document the difference between SDs
and SAs is ignored.

19

Chapter 2. Setting Up Cygwin

2.4.2. Process privileges
Any process started under control of cygwin has a semaphore attached to it, that is
used for signaling purposes. The creation of this semaphore can be found in sigproc.cc,
function ‘getsem’. The first parameter to the function call ‘CreateSemaphore’ is an SA.
Without ntsec this SA assigns default security to the semaphore. There is a simple dis-
advantage: Only the owner of the process may send signals to it. Or, in other words, if
the owner of the process is not a member of the administrators’ group, no administrator
may kill the process! This is especially annoying, if processes are started via service
manager.

Ntsec now assigns an SA to the process control semaphore, that has each permission set
for the user of the process, for the administrators’ group and for ‘system’, which is a
synonym for the operating system itself. The creation of this SA is done by the function
‘sec_user’, that can be found in ‘shared.cc’. Each member of the administrators’ group is
now allowed to send signals to any process created in cygwin, regardless of the process
owner.

Moreover, each process now has the appropriate security settings, when it is started via
‘CreateProcess’. You will find this in function ‘spawn_guts’ in module ‘spawn.cc’. The
security settings for starting a process in another user context have to add the sid of the
new user, too. In the case of the ‘CreateProcessAsUser’ call, sec_user creates an SA
with an additional entry for the sid of the new user.

2.4.3. File permissions
If ntsec is turned on, file permissions are set as in UNIX. An SD is assigned to the file
containing the owner and group and ACEs for the owner, the group and ‘Everyone’.

The complete settings of UNIX like permissions can be found in the file ‘security.cc’.
The two functions ‘get_nt_attribute’ and ‘set_nt_attribute’ are the main code. The read-
ing and writing of the SDs is done by the functions ‘read_sd’ and ‘write_sd’. ‘write_sd’
uses the function ‘BackupRead’ instead of the simpler function ‘SetFileSecurity’ be-
cause the latter is unable to set owners different from the caller.

If you are creating a file ‘foo’ outside of cygwin, you will see something like the follow-
ing on ls -ln:

If your login is member of the administrators’ group:

rwxrwxrwx 1 544 513 ... foo

if not:

20

Chapter 2. Setting Up Cygwin

rwxrwxrwx 1 1000 513 ... foo

Note the user and group IDs. 544 is the UID of the administrators’ group. This is a
‘feature’ :-P of WinNT. If one is a member of the administrators’ group, every file, that
he has created is owned by the administrators’ group, instead by him.

The second example shows the UID of the first user, that has been created with NT’s the
user administration tool. The users and groups are sequentially numbered, starting with
1000. Users and groups are using the same numbering scheme, so a user and a group
don’t share the same ID.

In both examples the GID 513 is of special interest. This GID is a well known group with
different naming in local systems and domains. Outside of domains the group is named
’None’ (‘Kein’ in German, ‘Aucun’ in French, etc.), in domains it is named ’Domain
Users’. Unfortunately, the group ‘None’ is never shown in the user admin tool outside
of domains! This is very confusing but this seems to have no negative consequences.

To work correctly, ntsec depends on the files/etc/passwd/ and/etc/group . In cyg-
win release 1.0 the names and the IDs must correspond to the appropriate NT IDs! The
IDs used in cygwin are the RID of the NT SID, as mentioned earlier. An SID of e.g. the
user ‘corinna’ on my NT workstation:

S-1-5-21-165875785-1005667432-441284377-1000

Note the last number: It’s the RID 1000, the cygwin’s UID.

Unfortunately, workstations and servers outside of domains are not able to set primary
groups! In these cases, where there is no correlation of users to primary groups, NT
returns 513 (None) as primary group, regardless of the membership to existing local
groups.

When usingmkpasswd -l -gon such systems, you have to change the primary group by
hand if ‘None’ as primary group is not what you want (and I’m sure, it’s not what you
want!)

Look at the following examples, which were parts of my files before storing SIDs in
/etc/passwd and /etc/group had been introduced (See next chapter for details). With the
exception of my personal user entry, all entries are well known entries.

Example 2-1. /etc/passwd

everyone:*:0:0:::
system:*:18:18:::
administrator::500:544::/home/root:/bin/bash
guest:*:501:546:::

21

Chapter 2. Setting Up Cygwin

administrators:*:544:544::/home/root:
corinna::1000:547:Corinna Vinschen:/home/corinna:/bin/tcsh

Example 2-2. /etc/group

everyone::0:
system::18:
none::513:
administrators::544:
users::545:
guests::546:
powerusers::547:

As you can see, I changed my primary group membership from 513 (None) to 547
(powerusers). So all files I created inside of Cygwin were now owned by the powerusers
group instead of None. This is the way I liked it.

Groups may be mentioned in the passwd file, too. This has two advantages:

• Because NT assigns them to files as owners, als -l is often more readable.
• Moreover it’s possible to assigned them to files as owners with cygwin’schown.

The group ‘system’ is the aforementioned synonym for the operating system itself and
is normally the owner of processes, that are started through service manager. The same
is true for files, that are created by processes, which are started through service manager.

2.4.4. New since Cygwin release 1.1
In Cygwin release 1.1 a new technique of using the/etc/passwd and/etc/group is
introduced.

Both files may now contain SIDs of users and groups. They are saved in the last field of
pw_gecos in/etc/passwd and in the gr_passwd field in/etc/group .

This has the following advantages:

• ntsec works better in domain environments.
• Accounts (users and groups) may get another name in cygwin than their NT account

name. The name in/etc/passwd or /etc/group is transparently used by cygwin
applications (eg.chown, chmod, ls):

root::500:513::/home/root:/bin/sh

22

Chapter 2. Setting Up Cygwin

instead of

adminstrator::500:513::/home/root:/bin/sh

Caution: If you like to use the account as login account viatelnet etc. you have to
remain the name unchanged or you have to use the special version oflogin which is
part of the standard Cygwin distribution since 1.1.

• Cygwin UIDs and GIDs are now not necessarily the RID part of the NT SID:

root::0:513:S-1-5-21-54355234-56236534-345635656-500:/home/root:/bin/sh

instead of

root::500:513::/home/root:/bin/sh

• As in U*X systems UIDs and GIDs numbering scheme now don’t influence each
other. So it’s possible to have same Id’s for a user and a group:

Example 2-3. /etc/passwd:

root::0:0:S-1-5-21-54355234-56236534-345635656-500:/home/root:/bin/sh

Example 2-4. /etc/group:

root:S-1-5-32-544:0:

The toolsmkpasswdandmkgroup create the needed entries by default. If you don’t
want that you can use the options-s or --no-sids . I suggest not to do this since ntsec
works better when having the SIDs available.

Please note that the pw_gecos field in/etc/passwd is defined as a comma seperated
list. The SID has to be the last field!

As aforementioned you are able to use cygwin account names different from the NT
account names. If you want to login thru ‘telnet’ or something else you have to use the
speciallogin. You may then add another field to pw_gecos which contains the NT user
name including it’s domain. So you are able to login as each domain user. The syntax is
easy: Just add an entry of the form U-ntdomain\ntusername to the pw_gecos field. Note
that the SID must still remain the last field in pw_gecos!

the_king::1:1:Elvis Presley,U-STILLHERE\elvis,S-1-5-21-1234-5678-9012-1000:/bin/sh

23

Chapter 2. Setting Up Cygwin

For a local user just drop the domain:

the_king::1:1:Elvis Presley,U-elvis,S-1-5-21-1234-5678-9012-1000:/bin/sh

In either case the password of the user is taken from the NT user database, NOT from
the passwd file!

As in the previous chapter I give my personal/etc/passwd and/etc/group as exam-
ples. Please note that I’ve changed these files heavily! There’s no need to change them
that way, it’s just for testing purposes and... for fun.

Example 2-5. /etc/passwd

root:*:0:0:Administrators group,S-1-5-32-544::
SYSTEM:*:18:18:,S-1-5-18:/home/system:/bin/bash
admin:*:500:513:,S-1-5-21-1844237615-436374069-1060284298-500:/home/Administrator:/bin/bash
corinna:*:100:0:Corinna Vinschen,S-1-5-21-1844237615-436374069-1060284298-1003:/home/corinna:/bin/tcsh
Guest:*:501:546:,S-1-5-21-1844237615-436374069-1060284298-501:/home/Guest:/bin/bash

Example 2-6. /etc/group

root:S-1-5-32-544:0:
local:S-1-2-0:2:
network:S-1-5-2:3:
interactive:S-1-5-4:4:
authenticatedusers:S-1-5-11:5:
SYSTEM:S-1-5-18:18:
local_svc:S-1-5-19:19:
netwrk_svc:S-1-5-20:20:
none:S-1-5-21-1844237615-436374069-1060284298-513:513:
bckup_op:S-1-5-32-551:551:
guests:S-1-5-32-546:546:
pwrusers:S-1-5-32-547:547:
replicator:S-1-5-32-552:552:
users:S-1-5-32-545:545:

If you want to do similar changes to your files, please do that only if you’re feeling
comfortably with the concepts. Otherwise don’t be surprised if some stuff doesn’t work
anymore. If you screwed up things, revert to files created by mkpasswd and mkgroup.
Especially don’t change the uid or the name of user SYSTEM. Even if that works mostly,
some Cygwin applications running as local service under that account could behave
strangly suddenly.

24

Chapter 2. Setting Up Cygwin

2.4.5. The mapping leak
Now its time to point out the leak in the NT permissions. The official documentation
explains in short the following:

• access allow ACEs are accumulated regarding to the group membership of the caller.
• The order of ACEs is important. The system reads them in sequence until either any

needed right is denied or all needed rights are granted. Later ACEs are then not taken
into account.

• All access denied ACEs _should_ precede any access allowed ACE.

Note that the last rule is a preference, not a law. NT will correctly deal with the ACL
regardless of the sequence order. The second rule is not modified to get the ACEs in the
prefered order.

Unfortunately the security tab of the NT4 explorer is completely unable to deal with
access denied ACEs while the explorer of W2K rearranges the order of the ACEs before
you can read them. Thank God, the sort order remains unchanged if one presses the
Cancel button.

You still ask "Where is the leak?" NT ACLs are unable to reflect each possible combi-
nation of POSIX permissions. Example:

rw-r-xrw-

1st try:

UserAllow: 110
GroupAllow: 101
OthersAllow: 110

Hmm, because of the accumulation of allow rights the user may execute because the
group may execute.

2st try:

UserDeny: 001
GroupAllow: 101
OthersAllow: 110

Now the user may read and write but not execute. Better? No! Unfortunately the group
may write now because others may write.

3rd try:

25

Chapter 2. Setting Up Cygwin

UserDeny: 001
GroupDeny: 010
GroupAllow: 001
OthersAllow: 110

Now the group may not write as intended but unfortunately the user may not write
anymore, too. How should this problem be solved? According to the official rules a
UserAllow has to follow the GroupDeny but it’s easy to see that this can never be solved
that way.

The only chance:

UserDeny: 001
UserAllow: 010
GroupDeny: 010
GroupAllow: 001
OthersAllow: 110

Again: This works for both, NT4 and W2K. Only the GUIs aren’t able to deal with that
order.

2.4.6. New acl API
For dealing with ACLs Cygwin now has the acl API as it’s implemented in newer ver-
sions of Solaris. The new data structure for a single ACL entry (ACE in NT terminology)
is defined insys/acl.h as:

typedef struct acl {
int a_type; /* entry type */
uid_t a_id; /* UID | GID */
mode_t a_perm; /* permissions */

} aclent_t;

The a_perm member of the aclent_t type contains only the bits for read, write and ex-
ecute as in the file mode. If eg. read permission is granted, all read bits (S_IRUSR,
S_IRGRP, S_IROTH) are set. CLASS_OBJ or MASK ACL entries are not fully imple-
mented yet.

The new API calls are

acl(2), facl(2)
aclcheck(3),
aclsort(3),

26

Chapter 2. Setting Up Cygwin

acltomode(3), aclfrommode(3),
acltopbits(3), aclfrompbits(3),
acltotext(3), aclfromtext(3)

Like in Solaris, Cygwin has two new commands for working with ACLs on the com-
mand line:getfaclandsetfacl.

Online man pages for the aforementioned commands and API calls can be found on eg.
http://docs.sun.com

2.4.7. New setuid concept
UNIX applications which have to switch the user context are using thesetuid andse-
teuid calls which are not part of the Windows API. Nevertheless these calls are sup-
ported under Windows NT/W2K since Cygwin release 1.1.3. Because of the nature of
NT security an application which needs the ability has to be patched, though.

NT uses so called ‘access tokens’ to identify a user and it’s permissions. To switch the
user context the application has to request such an ‘access token’. This is typically done
by calling the NT API functionLogonUser. The access token is returned and either
used inImpersonateLoggedOnUserto change user context of the current process or in
CreateProcessAsUserto change user context of a spawned child process. An important
restriction is that the application usingLogonUsermust have special permissions:

"Act as part of the operating system"
"Replace process level token"
"Increase quotas"

Note that administrators do not have all these user rights set by default.

Two new Cygwin calls are introduced to support portingsetuidapplications with a min-
imum of effort. You only give Cygwin the right access token and then you can callse-
teuid or setuidas usual in POSIX applications. The call tosexecis not needed anymore.
Porting asetuidapplication is illustrated by a short example:

/* First include all needed cygwin stuff. */
#ifdef __CYGWIN__
#include <windows.h>
#include <sys/cygwin.h>
/* Use the following define to determine the Windows version */
#define is_winnt (GetVersion() < 0x80000000)
#endif

27

Chapter 2. Setting Up Cygwin

[...]

struct passwd *user_pwd_entry = getpwnam (username);
char *cleartext_password = getpass ("Password:");

[...]

#ifdef __CYGWIN__
/* Patch the typical password test. */
if (is_winnt)

{
HANDLE token;

/* Try to get the access token from NT. */
token = cygwin_logon_user (user_pwd_entry, cleartext_password);
if (token == INVALID_HANDLE_VALUE)

error_exit;
/* Inform Cygwin about the new impersonation token.

Cygwin is able now, to switch to that user context by
setuid or seteuid calls. */

cygwin_set_impersonation_token (token);
}

else
#endif /* CYGWIN */

/* Use standard method for W9X as well. */
hashed_password = crypt (cleartext_password, salt);
if (!user_pwd_entry ||

strcmp (hashed_password, user_pwd_entry->pw_password))
error_exit;

[...]

/* Everything else remains the same! */

setegid (user_pwd_entry->pw_gid);
seteuid (user_pwd_entry->pw_uid);
execl ("/bin/sh", ...);

The new Cygwin call to retrive an access token is defined as follows:

#include <windows.h>
#include <sys/cygwin.h>

HANDLE

28

Chapter 2. Setting Up Cygwin

cygwin_logon_user (struct passwd *pw, const char *cleartext_password)

You can call that function as often as you want for different user logons and remeber the
access tokens for further calls to the second function.

#include <windows.h>
#include <sys/cygwin.h>

void
cygwin_set_impersonation_token (HANDLE hToken);

is the call to inform Cygwin about the user context to which further calls to
setuid/seteuidshould switch to. While you need always the correct access token to do
a setuid/seteuidto another users context, you are always able to usesetuid/seteuidto
return to your own user context by giving your own uid as parameter.

If you have remembered several access tokens from calls tocygwin_logon_useryou
can switch to different user contexts by observing the following order:

cygwin_set_impersonation_token (user1_token);
seteuid (user1_uid);

[...]

seteuid (own_uid);
cygwin_set_impersonation_token (user2_token);
seteuid (user2_uid);

[...]

seteuid (own_uid);
cygwin_set_impersonation_token (user1_token);
seteuid (user1_uid);

etc.

2.4.8. New since Cygwin release 1.3.3
Since Cygwin release 1.3.3, applications having theCreate a process level tokenuser
right can switch user context without giving a password by just calling the usualsetuid,
seteuid, setgidandsetegidfunctions. This is typically only given to the SYSTEM user.

29

Chapter 2. Setting Up Cygwin

However, this now allows to switch the user context using e. g. rhosts authentication or
(when running sshd under SYSTEM account as service) public key authentication.

An important restriction of this method is, that a process started under SYSTEM account
can’t access network shares which require authentication. This also applies to the sub-
processes which switched the user context without a password. People using network
home drives are typically not able to access it when trying to login using ssh or rsh
without password.

2.4.9. Special values of user and group ids
If the current user is not present in/etc/passwd , that user’s user id is set to a special
value of 400. The user name for the current user will always be shown correctly. If
another user (or a Windows group, treated as a user) is not present in/etc/passwd ,
the user id of that user will have a special value of -1 (which would be shown byls as
65535). The user name shown in this case will be ’????????’.

If the current user is not present in/etc/passwd , that user’s login group id is set to a
special value of 401. If another user is not present in/etc/passwd , that user’s login
group id is set to a special value of -1. If the user is present in/etc/passwd , but that
user’s group is not in/etc/group and is not the login group of that user, the group id is
set to a special value of -1. The name of this group (id -1) will be shown as ’????????’.
In releases of Cygwin before 1.3.20, the group id 401 had a group name ’None’. Since
Cygwin release 1.3.20, the group id 401 is shown as ’mkpasswd’, indicating the com-
mand that should be run to alleviate the situation.

Also, since Cygwin release 1.3.20, if the current user is present in/etc/passwd , but
that user’s login group is not present in/etc/group , the group name will be shown as
’mkgroup’, again indicating the appropriate command.

To summarize:

• If the current user doesn’t show up in/etc/passwd , it’s groupwill be named ’mk-
passwd’.

• Otherwise, if the login group of the current user isn’t in/etc/group , it will be named
’mkgroup’.

• Otherwise a group not in/etc/group will be shown as ’????????’ and a user not in
/etc/passwd will be shown as "????????".

Note that, since the special user and group names are just indicators, nothing prevents
you from actually having a user named ‘mkpasswd’ in/etc/passwd (or a group named
‘mkgroup’ in /etc/group). If you do that, however, be aware of the possible confusion.

30

Chapter 2. Setting Up Cygwin

2.5. Customizing bash
To set bash up so that cut and paste work properly, click on the "Properties" button
of the window, then on the "Misc" tab. Make sure that "Quick Edit" is checked and
"Fast Pasting" isn’t. These settings will be remembered next time you run bash from
that shortcut. Similarly you can set the working directory inside the "Program" tab. The
entry "%HOME%" is valid.

Your home directory should contain three initialization files that control the behavior of
bash. They are.profile , .bashrc and .inputrc . These initialization files will only
be read if HOME is defined before starting bash.

.profile (other names are also valid, see the bash man page) contains bash commands.
It is executed when bash is started as login shell, e.g. from the commandbash --login.
This is a useful place to define and export environment variables and bash functions that
will be used by bash and the programs invoked by bash. It is a good place to redefine
PATH if needed. We recommend adding a ":." to the end of PATH to also search the cur-
rent working directory (contrary to DOS, the local directory is not searched by default).
Also to avoid delays you should eitherunset MAILCHECK or define MAILPATH to
point to your existing mail inbox.

.bashrc is similar to .profile but is executed each time an interactive bash shell is
launched. It serves to define elements that are not inherited through the environment,
such as aliases. If you do not use login shells, you may want to put the contents of
.profile as discussed above in this file instead.

shopt -s nocaseglob

will allow bash to glob filenames in a case-insensitive manner. Note that.bashrc is not
called automatically for login shells. You can source it from.profile .

.inputrc controls how programs using the readline library (includingbash) behave.
It is loaded automatically. For full details see theFunction and Variable Index

section of the GNU readline manual. Consider the following settings:

Ignore case while completing
set completion-ignore-case on
Make Bash 8bit clean
set meta-flag on
set convert-meta off
set output-meta on

The first command makes filename completion case insensitive, which can be conve-
nient in a Windows environment. The next three commands allowbash to display 8-bit

31

Chapter 2. Setting Up Cygwin

characters, useful for languages with accented characters. Note that tools that do not use
readline for display, such aslessandls, require additional settings, which could be put
in your .bashrc :

alias less=’/bin/less -r’
alias ls=’/bin/ls -F --color=tty --show-control-chars’

32

Chapter 3. Using Cygwin
This chapter explains some key differences between the Cygwin environment and tradi-
tional UNIX systems. It assumes a working knowledge of standard UNIX commands.

3.1. Mapping path names

3.1.1. Introduction
Cygwin supports both Win32- and POSIX-style paths, where directory delimiters may
be either forward or back slashes. UNC pathnames (starting with two slashes and a
network name) are also supported.

POSIX operating systems (such as Linux) do not have the concept of drive letters. In-
stead, all absolute paths begin with a slash (instead of a drive letter such as "c:") and all
file systems appear as subdirectories (for example, you might buy a new disk and make
it be the/disk2 directory).

Because many programs written to run on UNIX systems assume the existance of a
single unified POSIX file system structure, Cygwin maintains a special internal POSIX
view of the Win32 file system that allows these programs to successfully run under
Windows. Cygwin uses this mapping to translate between Win32 and POSIX paths as
necessary.

3.1.2. The Cygwin Mount Table
The mount utility program is used to to map Win32 drives and network shares into
Cygwin’s internal POSIX directory tree. This is a similar concept to the typical UNIX
mount program. For those people coming from a Windows background, themount util-
ity is very similar to the old DOSjoin , in that it makes your drive letters appear as
subdirectories somewhere else.

The mapping is stored in the current user’s Cygwinmount tablein the Windows reg-
istry so that the information will be retrieved next time the user logs in. Because it is
sometimes desirable to have system-wide as well as user-specific mounts, there is also
a system-wide mount table that all Cygwin users inherit. The system-wide table may
only be modified by a user with the appropriate priviledges (Administrator priviledges
in Windows NT).

33

Chapter 3. Using Cygwin

The current user’s table is located under "HKEY_CURRENT_USER/Software/Cygnus
Solutions/Cygwin/mounts v<version>" where <version> is the latest registry version as-
sociated with the Cygwin library (this version is not the same as the release number). The
system-wide table is located under the same subkeys under HKEY_LOCAL_SYSTEM.

By default, the POSIX root/ points to the system partition but it can be relocated to any
directory in the Windows file system using themount command. Whenever Cygwin
generates a POSIX path from a Win32 one, it uses the longest matching prefix in the
mount table. Thus, ifC: is mounted as/c and also as/ , then Cygwin would translate
C:/foo/bar to /c/foo/bar .

Invoking mount without any arguments displays Cygwin’s current set of mount points.
In the following example, the C drive is the POSIX root and D drive is mapped to/d .
Note that in this case, the root mount is a system-wide mount point that is visible to
all users running Cygwin programs, whereas the/d mount is only visible to the current
user.

Example 3-1. Displaying the current set of mount points

c:\> mount
f:\cygwin\bin on /usr/bin type system (binmode)
f:\cygwin\lib on /usr/lib type system (binmode)
f:\cygwin on / type system (binmode)
e:\src on /usr/src type system (binmode)
c: on /cygdrive/c type user (binmode,noumount)
e: on /cygdrive/e type user (binmode,noumount)

You can also use themount command to add new mount points, and theumount to
delete them. SeeSection 3.6.8andSection 3.6.15for more information on how to use
these utilities to set up your Cygwin POSIX file system.

Whenever Cygwin cannot use any of the existing mounts to convert from a particular
Win32 path to a POSIX one, Cygwin will automatically default to an imaginary mount
point under the default POSIX path/cygdrive . For example, if Cygwin accessesZ:
\foo and the Z drive is not currently in the mount table, thenZ:\ would be automatically
converted to/cygdrive/Z . The default prefix of/cygdrive may be changed (see the
Section 3.6.8for more information).

It is possible to assign some special attributes to each mount point. Automatically
mounted partitions are displayed as "auto" mounts. Mounts can also be marked as either
"textmode" or "binmode" -- whether text files are read in the same manner as binary
files by default or not (seeSection 3.2for more information on text and binary modes.

34

Chapter 3. Using Cygwin

3.1.3. Additional Path-related Information
Thecygpathprogram provides the ability to translate between Win32 and POSIX path-
names in shell scripts. SeeSection 3.6.2for the details.

The HOME, PATH, and LD_LIBRARY_PATH environment variables are automatically
converted from Win32 format to POSIX format (e.g. fromc:\cygwin\bin to /bin , if
there was a mount from that Win32 path to that POSIX path) when a Cygwin process
first starts.

Symbolic links can also be used to map Win32 pathnames to POSIX. For example,
the commandln -s //pollux/home/joe/data /datawould have about the same effect as
creating a mount point from//pollux/home/joe/data to /data usingmount, except
that symbolic links cannot set the default file access mode. Other differences are that the
mapping is distributed throughout the file system and proceeds by iteratively walking
the directory tree instead of matching the longest prefix in a kernel table. Note that
symbolic links will only work on network drives that are properly configured to support
the "system" file attribute. Many do not do so by default (the Unix Samba server does
not by default, for example).

3.2. Text and Binary modes

3.2.1. The Issue
On a UNIX system, when an application reads from a file it gets exactly what’s in
the file on disk and the converse is true for writing. The situation is different in the
DOS/Windows world where a file can be opened in one of two modes, binary or text.
In the binary mode the system behaves exactly as in UNIX. However on writing in text
mode, a NL (\n, ^J) is transformed into the sequence CR (\r, ^M) NL.

This can wreak havoc with the seek/fseek calls since the number of bytes actually in the
file may differ from that seen by the application.

The mode can be specified explicitly as explained in the Programming section below. In
an ideal DOS/Windows world, all programs using lines as records (such asbash, make,
sed ...) would open files (and change the mode of their standard input and output) as
text. All other programs (such ascat, cmp, tr ...) would use binary mode. In practice
with Cygwin, programs that deal explicitly with object files specify binary mode (this is
the case ofod, which is helpful to diagnose CR problems). Most other programs (such

35

Chapter 3. Using Cygwin

ascat, cmp, tr) use the default mode.

3.2.2. The default Cygwin behavior
The Cygwin system gives us some flexibility in deciding how files are to be opened
when the mode is not specified explicitly. The rules are evolving, this section gives the
design goals.

a. If the file appears to reside on a file system that is mounted (i.e. if its pathname
starts with a directory displayed bymount), then the default is specified by the
mount flag. If the file is a symbolic link, the mode of the target file system applies.

b. If the file appears to reside on a file system that is not mounted (as can happen when
the path contains a drive letter), the default is text.

c. Pipes and non-file devices are opened in binary mode, except if the CYGWIN envi-
ronment variable containsnobinmode .

Warning!
In b20.1 of 12/98, a file will be opened in binary mode if
any of the following conditions hold:

1. binary mode is specified in the
open call

2. CYGWIN contains binmode

3. the file resides in a binary
mounted partition

4. the file is not a disk file

d. When a Cygwin program is launched by a shell, its standard input, output and error
are in binary mode if the CYGWIN variable containstty , else in text mode, except
if they are piped or redirected.

When redirecting, the Cygwin shells uses rules (a-c). For these shells the relevant
value of CYGWIN is that at the time the shell was launched and not that at the
time the program is executed. Non-Cygwin shells always pipe and redirect with
binary mode. With non-Cygwin shells the commandscat filename | program and
program < filename are not equivalent whenfilename is on a text-mounted

partition.

36

Chapter 3. Using Cygwin

3.2.3. Example
To illustrate the various rules, we provide scripts to delete CRs from files by using the
tr program, which can only write to standard output. The script

#!/bin/sh
Remove \r from the file given as argument
tr -d ’\r’ < "$1" > "$1".nocr

will not work on a text mounted systems because the \r will be reintroduced on writing.
However scripts such as

#!/bin/sh
Remove \r from the file given as argument
tr -d ’\r’ | gzip | gunzip > "$1".nocr

and the .bat file

REM Remove \r from the file given as argument
@echo off
tr -d \r < %1 > %1.nocr

work fine. In the first case (assuming the pipes are binary) we rely ongunzip to set its
output to binary mode, possibly overriding the mode used by the shell. In the second
case we rely on the DOS shell to redirect in binary mode.

3.2.4. Binary or text?
UNIX programs that have been written for maximum portability will know the differ-
ence between text and binary files and act appropriately under Cygwin. For those pro-
grams, the text mode default is a good choice. Programs included in official Cygwin
distributions should work well in the default mode.

Text mode makes it much easier to mix files between Cygwin and Windows programs,
since Windows programs will usually use the CRLF format. Unfortunately you may still
have some problems with text mode. First, some of the utilities included with Cygwin do
not yet specify binary mode when they should. Second, you will introduce CRs in text
files you write, which can cause problems when moving them back to a UNIX system.

37

Chapter 3. Using Cygwin

If you are mounting a remote file system from a UNIX machine, or moving files back
and forth to a UNIX machine, you may want to access the files in binary mode. The text
files found there will normally be in UNIX NL format, and you would want any files
put there by Cygwin programs to be stored in a format understood by UNIX. Be sure to
remove CRs from all Makefiles and shell scripts and make sure that you only edit the
files with DOS/Windows editors that can cope with and preserve NL terminated lines.

Note that you can decide this on a disk by disk basis (for example, mounting local
disks in text mode and network disks in binary mode). You can also partition a disk, for
example by mountingc: in text mode, andc:\home in binary mode.

3.2.5. Programming
In theopen() function call, binary mode can be specified with the flagO_BINARYand
text mode withO_TEXT. These symbols are defined infcntl.h .

In the fopen() function call, binary mode can be specified by adding ab to the mode
string. There is no direct way to specify text mode.

The mode of a file can be changed by the callsetmode(fd,mode) wherefd is a file de-
scriptor (an integer) andmode is O_BINARYor O_TEXT. The function returnsO_BINARY

or O_TEXTdepending on the mode before the call, andEOFon error.

3.3. File permissions
On Windows 9x systems, files are always readable, and Cygwin uses the native read-
only mode to determine if they are writable. Files are considered to be executable if the
filename ends with .bat, .com or .exe, or if its content starts with #!. Consequentlychmod
can only affect the "w" mode, it silently ignores actions involving the other modes. This
means thatls -l needs to open and read files. It can thus be relatively slow.

Under NT, file permissions default to the same behavior as Windows 9x but there is
optional functionality in Cygwin that can make file systems behave more like on UNIX
systems. This is turned on by adding the "ntea" option to the CYGWIN environment
variable.

When the "ntea" feature is activated, Cygwin will start with basic permissions as de-
termined above, but can store POSIX file permissions in NT Extended Attributes. This
feature works quite well on NTFS partitions because the attributes can be stored sensi-
bly inside the normal NTFS filesystem structure. However, on a FAT partition, NT stores

38

Chapter 3. Using Cygwin

extended attributes in a flat file at the root of the partition calledEADATA.SF. This file
can grow to extremely large sizes if you have a large number of files on the partition
in question, slowing the system to a crawl. In addition, theEADATA.SFfile can only be
deleted outside of Windows because of its "in use" status. For these reasons, the use of
NT Extended Attributes is off by default in Cygwin. Finally, note that specifying "ntea"
in CYGWIN has no effect under Windows 9x.

Under NT, the test "[-w filename]" is only true if filename is writable across the board,
e.g.chmod +w filename.

3.4. Special filenames

3.4.1. DOS devices
Windows filenames invalid under Windows are also invalid under Cygwin. This means
that base filenames such asAUX, COM1, LPT1or PRN(to name a few) cannot be used in a
regular Cygwin Windows or POSIX path, even with an extension (prn.txt). However
the special names can be used as filename extensions (file.aux). You can use the spe-
cial names as you would under DOS, for example you can print on your default printer
with the commandcat filename > PRN(make sure to end with a Form Feed).

3.4.2. POSIX devices
There is no need to create a POSIX/dev directory as it is simulated within Cygwin
automatically. It supports the following devices:/dev/null , /dev/zero , /dev/tty ,
/dev/ttyX , /dev/ptmx , /dev/comX (the serial ports),/dev/windows (the windows
message queue),/dev/random and/dev/urandom. These devices cannot be seen with
the commandls /devalthough commands such asls /dev/tty work fine.

Windows NT/W2K/XP additionally support raw devices like floppies, disks, partitions
and tapes. These are accessed from Cygwin applications using POSIX device names
which are supported in two different ways.

Up to Cygwin 1.3.3 the only way to access those devices was to mount the Win32 device
names to a POSIX device name but this usage is discouraged since Cygwin 1.3.4 and
only kept for backward compatibility.

Beginning with Cygwin 1.3.4, raw devices are accessible by Cygwin processes using
fixed POSIX device names. These fixed POSIX device names are generated using a

39

Chapter 3. Using Cygwin

direct conversion from the POSIX namespace to the internal NT namespace. E.g. the
first harddisk is the NT internal device \device\harddisk0\partition0 or the first parti-
tion on the third harddisk is \device\harddisk2\partition1. The first floppy in the system
is \device\floppy0, the first CD-ROM is \device\cdrom0 and the first tape drive is \de-
vice\tape0.

The new fixed POSIX names are mapped to NT internal devices as follows:

/dev/st0 \device\tape0, rewind
/dev/nst0 \device\tape0, no-rewind
/dev/st1 \device\tape1
...

/dev/fd0 \device\floppy0
/dev/fd1 \device\floppy1
...

/dev/scd0 \device\cdrom0
/dev/scd1 \device\cdrom1
...

/dev/sda \device\harddisk0\partition0 (whole disk)
/dev/sda1 \device\harddisk0\partition1 (first partition)
...
/dev/sda15 \device\harddisk0\partition15 (fifteenth partition)

/dev/sdb \device\harddisk1\partition0
/dev/sdb1 \device\harddisk1\partition1

[up to]

/dev/sdl \device\harddisk11\partition0
/dev/sdl1 \device\harddisk11\partition1
...
/dev/sdl15 \device\harddisk11\partition15

if you don’t like these device names, feel free to create symbolic links as they are created
on Linux systems for convenience:

ln -s /dev/scd0 /dev/cdrom
ln -s /dev/scd2 /dev/sr2 # actually srX are real device nodes on Linux but who cares.
ln -s /dev/nst0 /dev/tape
...

40

Chapter 3. Using Cygwin

Note that you can’t use the mount table to map from fixed device name to your own
device name or to map from internal NT device name to your own device name. Also
using symbolic links to map from the internal NT device name to your own device name
will not do what you want. The following three examples will not work as expected:

mount -f -b /dev/nst0 /dev/tape
mount -f -b /device/tape0 /dev/tape
ln -s /device/tape0 /dev/tape

3.4.3. The .exe extension
Executable program filenames end with .exe but the .exe need not be included in the
command, so that traditional UNIX names can be used. However, for programs that end
in ".bat" and ".com", you cannot omit the extension.

As a side effect, the ls filename gives information aboutfilename.exe if
filename.exe exists andfilename does not. In the same situation the function call
stat("filename",..) gives information aboutfilename.exe . The two files can be
distinguished by examining their inodes, as demonstrated below.

C:\> ls *
a a.exe b.exe
C:\> ls -i a a.exe
445885548 a 435996602 a.exe
C:\> ls -i b b.exe
432961010 b 432961010 b.exe

If a shell scriptmyprogand a programmyprog.exe coexist in a directory, the program
has precedence and is selected for execution ofmyprog.

Thegcccompiler produces an executable namedfilename.exe when asked to produce
filename . This allows many makefiles written for UNIX systems to work well under
Cygwin.

Unfortunately, theinstall andstrip commands do distinguish betweenfilename and
filename.exe . They fail when working on a non-existingfilename even iffilename.
exe exists, thus breaking some makefiles. This problem can be solved by writinginstall
andstrip shell scripts to provide the extension ".exe" when needed.

41

Chapter 3. Using Cygwin

3.4.4. The /proc filesystem
Cygwin, like Linux and other similar operating systems, supports the/proc virtual
filesystem. The files in this directory are representations of various aspects of your sys-
tem, for example the commandcat /proc/cpuinfo displays information such as
what model and speed processor you have.

One unique aspect of the Cygwin/proc filesystem is/proc/registry , which displays
the Windows registry with eachKEYas a directory and eachVALUEas a file. As anytime
you deal with the Windows registry, use caution since changes may result in an unstable
or broken system.

The Cygwin/proc is not as complete as the one in Linux, but it provides significant
capabilities. The procps package contains several utilities that use it.

3.4.5. The @pathnames
To circumvent the limitations on shell line length in the native Windows command
shells, Cygwin programs expand their arguments starting with "@" in a special way.
If a file pathnameexists, the argument@pathnameexpands recursively to the content of
pathname. Double quotes can be used inside the file to delimit strings containing blank
space. Embedded double quotes must be repeated. In the following example compare
the behaviors of the bash built-inechoand of the program/bin/echo.

Example 3-2. Using @pathname

bash$ echo ’This is "a long" line’ > mylist
bash$ echo @mylist
@mylist
c:\> c:\cygwin\bin\echo @mylist
This is a long line

3.5. The CYGWIN environment variable
The CYGWIN environment variable is used to configure many global settings for the
Cygwin runtime system. It contains the options listed below, separated by blank charac-
ters. Many options can be turned off by prefixing withno .

42

Chapter 3. Using Cygwin

• (no)binmode - if set, non-disk (e.g. pipe and COM ports) file opens default to binary
mode (no CRLF translation) instead of text mode. Defaults to set (binary mode). By
default, devices are opened in binary mode, so this option has little effect on normal
cygwin operations. It does affect two things, however. For non-NTFS filesystems,
this option will control the line endings for standard output/input/error for redirection
from the Windows command shell. It will also affect the default translation mode of
a pipe, although most shells set the pipe to binary by default.

Warning!
If set in 12/98 b20.1, all files always open in binary mode.

• check_case:level - Controls the behaviour of Cygwin when a user tries to open or
create a file using a case different from the case of the path as asved on the disk.
level is one ofrelaxed , adjust andstrict .

• relaxed which is the default behaviour simply ignores case. That’s the default for
native Windows applications as well.

• adjust behaves mostly invisible. The POSIX input path is internally adjusted in
case, so that the resulting DOS path uses the correct case throughout. You can see
the result when changing the directory using a wrong case and calling/bin/pwd
afterwards.

• strict results in a error message if the case isn’t correct. Trying to open a fileFoo
while a file fOo exists results in a "no such file or directory" error. Trying to create
a file BARwhile a fileBar exists results in a "Filename exists with different case"
error.

• codepage:[ansi|oem] - Windows console applications can use different character sets
(codepages) for drawing characters. The first setting, called "ansi", is the default. This
character set contains various forms of latin characters used in European languages.
The name originates from the ANSI Latin1 (ISO 8859-1) standard, used in Windows
1.0, though the character sets have since diverged from any standard. The second
setting selects an older, DOS-based character set, containing various line drawing and
special characters. It is called "oem" since it was originally encoded in the firmware
of IBM PCs by original equipment manufacturers (OEMs). If you find that some
characters (especially non-US or ’graphical’ ones) do not display correctly in Cygwin,
you can use this option to select an appropriate codepage.

43

Chapter 3. Using Cygwin

• (no)envcache - If set, environment variable conversions (between Win32 and POSIX)
are cached. Note that this is may cause problems if the mount table changes, as the
cache is not invalidated and may contain values that depend on the previous mount
table contents. Defaults to set.

• (no)export - if set, the final values of these settings are re-exported to the environment
as CYGWIN again. Defaults to off.

• error_start:filepath - if set, runsfilepath when cygwin encounters a fatal error. This
is useful for debugging.filepath is usually set to the path to thegdb or dumper
program. There is no default set.

• forkchunk:32768 - causesfork() to copy memory some number of bytes at a time,
in the above example 32768 bytes (32Kb) at a time. The default is to copy as many
bytes as possible, which is preferable in most cases but may slow some older systems
down.

• (no)glob[:ignorecase] - if set, command line arguments containing UNIX-style file
wildcard characters (brackets, question mark, asterisk, escaped with \) are expanded
into lists of files that match those wildcards. This is applicable only to programs run-
ning from a DOS command line prompt. Default is set.

This option also accepts an optional[no]ignorecase modifer. If supplied, wildcard
matching is case insensitive. The default isnoignorecase

• (no)ntea - if set, use the full NT Extended Attributes to store UNIX-like inode infor-
mation. This option only operates under Windows NT. Defaults to not set.

Warning!
This may create additional large files on non-NTFS partitions.

• (no)ntsec - if set, use the NT security model to set UNIX-like permissions on files
and processes. The file permissions can only be set on NTFS partitions. FAT doesn’t
support the NT file security. Defaults to set. For more information, read the documen-
tation inSection 2.4.

• (no)smbntsec - if set, use ntsec on remote drives as well (this is the default). If you
encounter problems with NT shares or Samba drives, setting this to nosmbntsec could
help. In that case the permission and owner/group information is faked as on FAT
partitions. A reason for a non working ntsec on remote drives could be insufficient

44

Chapter 3. Using Cygwin

permissions of the users. Since the needed user rights are somewhat dangerous (SeRe-
storePrivilege) it’s not always an option to grant that rights to users. However, this
shouldn’t be a problem in NT domain environments.

• (no)reset_com - if set, serial ports are reset to 9600-8-N-1 with no flow control when
used. This is done at open time and when handles are inherited. Defaults to set.

• (no)server - if set, allows client applications to use the Cygserver facilities. This op-
tion must be enabled explicitely on the client side, otherwise your applications won’t
be able to use the XSI IPC function calls (msgget , semget , shmget , and friends)
successfully. These function calls will return withENOSYS, "Bad system call".

• (no)strip_title - if set, strips the directory part off the window title, if any. Default is
not set.

• (no)title - if set, the title bar reflects the name of the program currently running. De-
fault is not set. Note that under Win9x the title bar is always enabled and it is stripped
by default, but this is because of the way Win9x works. In order not to strip, specify
title or title nostrip_title .

• (no)tty - if set, Cygwin enables extra support (i.e., termios) for UNIX-like ttys. It is
not compatible with some Windows programs. Defaults to not set, in which case the
tty is opened in text mode. Note that this has been changed such that ^D works as
expected instead of ^Z, and is settable viastty. This option must be specified before
starting a Cygwin shell and it cannot be changed in the shell.

• (no)winsymlinks - if set, Cygwin creates symlinks as Windows shortcuts with a spe-
cial header and the R/O attribute set. If not set, Cygwin creates symlinks as plain files
with a magic number, a path and the system attribute set. Defaults to set.

3.6. Cygwin Utilities
Cygwin comes with a number of command-line utilities that are used to manage the
UNIX emulation portion of the Cygwin environment. While many of these reflect their
UNIX counterparts, each was written specifically for Cygwin. You may use the long or
short option names interchangeably; for example,--help and-h function identically.
All of the Cygwin command-line utilities support the--help and--version options.

3.6.1. cygcheck

Usage: cygcheck [OPTIONS] [PROGRAM...]

45

Chapter 3. Using Cygwin

Check system information or PROGRAM library dependencies

-c, --check-setup check packages installed via setup.exe
-d, --dump-only no integrity checking of package contents (requires -c)
-s, --sysinfo system information (not with -k)
-v, --verbose verbose output (indented) (for -[cfls] or programs)
-r, --registry registry search (requires -s)
-k, --keycheck perform a keyboard check session (not with -[scfl])
-f, --find-package find installed packages containing files (not with -[cl])
-l, --list-package list the contents of installed packages (not with -[cf])
-h, --help give help about the info (not with -[cfl])
-V, --version output version information and exit

Thecygcheckprogram is a diagnostic utility for dealing with Cygwin programs. If you
are familiar withdpkg or rpm , cygcheckis similar in many ways. (The major difference
is thatsetup.exehandles installing and uninstalling packages; seeSection 2.1for more
information.)

The-c option checks the version and status of installed Cygwin packages. If you specify
one or more package names,cygcheckwill limit its output to those packages, or with no
arguments it lists all packages. A package will be markedIncomplete if files originally
installed are no longer present. The best thing to do in that situation is reinstall the
package withsetup.exe. To see which files are missing, use the-v option. If you do not
need to know the status of each package and wantcygcheckto run faster, add the-d
option andcygcheckwill only output the name and version for each package.

If you list one or more programs on the command line,cygcheckwill diagnose the
runtime environment of that program or programs, providing the names of DLL files on
which the program depends. If you specify the-s option,cygcheckwill give general
system information. If you list one or more programs on the command line and specify
-s , cygcheckwill report on both.

The-f option helps you to track down which package a file came from, and-l lists all
files in a package. For example, to find out about/usr/bin/less and its package:

Example 3-3. Example cygcheck usage

$ cygcheck.exe -f /usr/bin/less
less-381-1

$ cygcheck.exe -l less
/usr/bin/less.exe
/usr/bin/lessecho.exe
/usr/bin/lesskey.exe

46

Chapter 3. Using Cygwin

/usr/man/man1/less.1
/usr/man/man1/lesskey.1

The -h option prints additional helpful messages in the report, at the beginning of each
section. It also adds table column headings. While this is useful information, it also adds
some to the size of the report, so if you want a compact report or if you know what
everything is already, just leave this out.

The -v option causes the output to be more verbose. What this means is that additional
information will be reported which is usually not interesting, such as the internal version
numbers of DLLs, additional information about recursive DLL usage, and if a file in one
directory in the PATH also occurs in other directories on the PATH.

The-r option causescygcheckto search your registry for information that is relevent to
Cygwin programs. These registry entries are the ones that have "Cygwin" in the name.
If you are paranoid about privacy, you may remove information from this report, but
please keep in mind that doing so makes it harder to diagnose your problems.

Thecygcheckprogram should be used to send information about your system for trou-
bleshooting when requested. When asked to run this command save the output so that
you can email it, for example:

C:\cygwin> cygcheck -s -v -r -h > cygcheck_output.txt

3.6.2. cygpath

Usage: cygpath (-d|-m|-u|-w|-t TYPE) [-c HANDLE] [-f FILE] [options] NAME
cygpath [-ADHPSW]

Convert Unix and Windows format paths, or output system path information

Output type options:
-d, --dos print DOS (short) form of NAME (C:\PROGRA~1\)
-m, --mixed like --windows, but with regular slashes (C:/WINNT)
-u, --unix (default) print Unix form of NAME (/cygdrive/c/winnt)
-w, --windows print Windows form of NAME (C:\WINNT)
-t, --type TYPE print TYPE form: ’dos’, ’mixed’, ’unix’, or ’windows’

Path conversion options:
-a, --absolute output absolute path
-l, --long-name print Windows long form of NAME (with -w, -m only)
-p, --path NAME is a PATH list (i.e., ’/bin:/usr/bin’)
-s, --short-name print DOS (short) form of NAME (with -w, -m only)

47

Chapter 3. Using Cygwin

System information:
-A, --allusers use ‘All Users’ instead of current user for -D, -P
-D, --desktop output ‘Desktop’ directory and exit
-H, --homeroot output ‘Profiles’ directory (home root) and exit
-P, --smprograms output Start Menu ‘Programs’ directory and exit
-S, --sysdir output system directory and exit
-W, --windir output ‘Windows’ directory and exit

The cygpath program is a utility that converts Windows native filenames to Cygwin
POSIX-style pathnames and vice versa. It can be used when a Cygwin program needs to
pass a file name to a native Windows program, or expects to get a file name from a native
Windows program. Alternatively,cygpath can output information about the location of
important system directories in either format.

The-u and-w options indicate whether you want a conversion to UNIX (POSIX) format
(-u) or to Windows format (-w). Use the-d to get DOS-style (8.3) file and path names.
The -m option will output Windows-style format but with forward slashes instead of
backslashes. This option is especially useful in shell scripts, which use backslashes as
an escape character.

In combination with the-w option, you can use the-l and -s options to use normal
(long) or DOS-style (short) form. The-d option is identical to-w and-s together.

Caveat: The-l option does not work if thecheck_caseparameter ofCYGWINis set to
strict, since Cygwin is not able to match any Windows short path in this mode.

The -p option means that you want to convert a path-style string rather than a single
filename. For example, the PATH environment variable is semicolon-delimited in Win-
dows, but colon-delimited in UNIX. By giving-p you are instructingcygpath to convert
between these formats.

The -i option supresses the print out of the usage message if no filename argument
was given. It can be used in make file rules converting variables that may be omitted
to a proper format. Note thatcygpath output may contain spaces (C:\Program Files) so
should be enclosed in quotes.

Example 3-4. Example cygpath usage

#!/bin/sh
if ["${1}" = ""];

then
XPATH=".";

else
XPATH="$(cygpath -w "${1}")";

fi

48

Chapter 3. Using Cygwin

explorer $XPATH &

The capital options-D , -H , -P , -S , and -W output directories used by Windows that
are not the same on all systems, for example-S might output C:\WINNT\SYSTEM32
or C:\WINDOWS\SYSTEM. The-H shows the Windows profiles directory that can be
used as root of home. The-A option forces use of the "All Users" directories instead of
the current user for the-D and-P options. On Win9x systems with only a single user,
-A has no effect;-D and-AD would have the same output. By default the output is in
UNIX (POSIX) format; use the-w or -d options to get other formats.

3.6.3. dumper

Usage: dumper [OPTION] FILENAME WIN32PID
Dump core from WIN32PID to FILENAME.core

-d, --verbose be verbose while dumping
-h, --help output help information and exit
-q, --quiet be quiet while dumping (default)
-v, --version output version information and exit

Thedumper utility can be used to create a core dump of running Windows process. This
core dump can be later loaded togdb and analyzed. One common way to usedumper
is to plug it into cygwin’s Just-In-Time debugging facility by adding

error_start=x:\path\to\dumper.exe

to theCYGWINenvironment variable. Please note thatx:\path\to\dumper.exe is
Windows-style and not cygwin path. Iferror_start is set this way, then dumper will
be started whenever some program encounters a fatal error.

dumper can be also be started from the command line to create a core dump of any run-
ning process. Unfortunately, because of a Windows API limitation, when a core dump
is created anddumper exits, the target process is terminated too.

To save space in the core dump,dumper doesn’t write those portions of target process’
memory space that are loaded from executable and dll files and are unchangeable, such
as program code and debug info. Instead,dumper saves paths to files which contain that
data. When a core dump is loaded into gdb, it uses these paths to load appropriate files.
That means that if you create a core dump on one machine and try to debug it on another,
you’ll need to place identical copies of the executable and dlls in the same directories as
on the machine where the core dump was created.

49

Chapter 3. Using Cygwin

3.6.4. getfacl

Usage: getfacl [-adn] FILE [FILE2...]
Display file and directory access control lists (ACLs).

-a, --all display the filename, the owner, the group, and
the ACL of the file

-d, --dir display the filename, the owner, the group, and
the default ACL of the directory, if it exists

-h, --help output usage information and exit
-n, --noname display user and group IDs instead of names
-v, --version output version information and exit

When multiple files are specified on the command line, a blank
line separates the ACLs for each file.

For each argument that is a regular file, special file or directory,getfacl displays the
owner, the group, and the ACL. For directoriesgetfacl displays additionally the default
ACL. With no options specified,getfacldisplays the filename, the owner, the group, and
both the ACL and the default ACL, if it exists. For more information on Cygwin and
Windows ACLs, see seeSection 2.4in the Cygwin User’s Guide. The format for ACL
output is as follows:

file: filename
owner: name or uid
group: name or uid
user::perm
user:name or uid:perm
group::perm
group:name or gid:perm
mask:perm
other:perm
default:user::perm
default:user:name or uid:perm
default:group::perm
default:group:name or gid:perm
default:mask:perm
default:other:perm

50

Chapter 3. Using Cygwin

3.6.5. kill

Usage: kill [-f] [-signal] [-s signal] pid1 [pid2 ...]
kill -l [signal]

Send signals to processes

-f, --force force, using win32 interface if necessary
-l, --list print a list of signal names
-s, --signal send signal (use kill --list for a list)
-h, --help output usage information and exit
-v, --version output version information and exit

The kill program allows you to send arbitrary signals to other Cygwin programs. The
usual purpose is to end a running program from some other window when ^C won’t
work, but you can also send program-specified signals such as SIGUSR1 to trigger ac-
tions within the program, like enabling debugging or re-opening log files. Each program
defines the signals they understand.

You may need to specify the full path to usekill from within some shells, including
bash, the default Cygwin shell. This is becausebashdefines akill builtin function; see
thebashman page underBUILTIN COMMANDSfor more information. To make sure
you are using the Cygwin version, try

$ /bin/kill --version

which should give the Cygwinkill version number and copyright information.

Unless you specific the-f option, the "pid" values used bykill are the Cygwin pids,
not the Windows pids. To get a list of running programs and their Cygwin pids, use the
Cygwinpsprogram.ps -W will display all windows pids.

Thekill -l option prints the name of the given signal, or a list of all signal names if no
signal is given.

To send a specific signal, use the-signN option, either with a signal number or a signal
name (minus the "SIG" part), like these examples:

Example 3-5. Using the kill command

$ kill 123
$ kill -1 123
$ kill -HUP 123
$ kill -f 123

51

Chapter 3. Using Cygwin

Here is a list of available signals, their numbers, and some commentary on them, from
the file<sys/signal.h> , which should be considered the official source of this infor-
mation.

SIGHUP 1 hangup
SIGINT 2 interrupt
SIGQUIT 3 quit
SIGILL 4 illegal instruction (not reset when caught)
SIGTRAP 5 trace trap (not reset when caught)
SIGABRT 6 used by abort
SIGEMT 7 EMT instruction
SIGFPE 8 floating point exception
SIGKILL 9 kill (cannot be caught or ignored)
SIGBUS 10 bus error
SIGSEGV 11 segmentation violation
SIGSYS 12 bad argument to system call
SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 14 alarm clock
SIGTERM 15 software termination signal from kill
SIGURG 16 urgent condition on IO channel
SIGSTOP 17 sendable stop signal not from tty
SIGTSTP 18 stop signal from tty
SIGCONT 19 continue a stopped process
SIGCHLD 20 to parent on child stop or exit
SIGTTIN 21 to readers pgrp upon background tty read
SIGTTOU 22 like TTIN for output if (tp->t_local<OSTOP)
SIGPOLL 23 System V name for SIGIO
SIGXCPU 24 exceeded CPU time limit
SIGXFSZ 25 exceeded file size limit
SIGVTALRM 26 virtual time alarm
SIGPROF 27 profiling time alarm
SIGWINCH 28 window changed
SIGLOST 29 resource lost (eg, record-lock lost)
SIGUSR1 30 user defined signal 1
SIGUSR2 31 user defined signal 2

3.6.6. mkgroup

Usage: mkgroup [OPTION]... [domain]...
Prints /etc/group file to stdout

Options:

52

Chapter 3. Using Cygwin

-l,--local print local group information
-c,--current print current group, if a domain account
-d,--domain print global group information (from current

domain if no domains specified).
-o,--id-offset offset change the default offset (10000) added to gids

in domain accounts.
-s,--no-sids don’t print SIDs in pwd field

(this affects ntsec)
-u,--users print user list in gr_mem field
-h,--help print this message

-v,--version print version information and exit

One of ‘-l’ or ‘-d’ must be given on NT/W2K.

Themkgroup program can be used to help configure your Windows system to be more
UNIX-like by creating an initial/etc/group . Its use is essential on the NT series (Win-
dows NT, 2000, and XP) to include Windows security information. It can also be used
on the Win9x series (Windows 95, 98, and Me) to create a file with the correct format.
To initially set up your machine if you are a local user, you’d do something like this:

Example 3-6. Setting up the groups file for local accounts

$ mkdir /etc
$ mkgroup -l > /etc/group

Note that this information is static. If you change the group information in your system,
you’ll need to regenerate the group file for it to have the new information.

The -d and -l options allow you to specify where the information comes from, the
local machine or the domain (default or given), or both. With the-d option the program
contacts the Domain Controller, which my be unreachable or have restricted access. An
entry for the current domain user can then be created by using the option-c together
with -l , but -c has no effect when used with-d . The-o option allows for special cases
(such as multiple domains) where the GIDs might match otherwise. The-s option omits
the NT Security Identifier (SID). For more information on SIDs, seeSection 2.4in the
Cygwin User’s Guide. The-u option causesmkgroup to enumerate the users for each
group, placing the group members in the gr_mem (last) field. Note that this can greatly
increase the time formkgroup to run in a large domain. Having gr_mem fields is helpful
when a domain user logs in remotely while the local machine is disconnected from the
Domain Controller.

53

Chapter 3. Using Cygwin

3.6.7. mkpasswd

Usage: mkpasswd [OPTION]... [domain]...
Prints /etc/passwd file to stdout

Options:
-l,--local print local user accounts
-c,--current print current account, if a domain account
-d,--domain print domain accounts (from current domain

if no domains specified)
-o,--id-offset offset change the default offset (10000) added to uids

in domain accounts.
-g,--local-groups print local group information too

if no domains specified
-m,--no-mount don’t use mount points for home dir
-s,--no-sids don’t print SIDs in GCOS field

(this affects ntsec)
-p,--path-to-home path use specified path and not user account home dir or /home
-u,--username username only return information for the specified user
-h,--help displays this message
-v,--version version information and exit

One of ‘-l’, ‘-d’ or ‘-g’ must be given on NT/W2K.

Themkpasswdprogram can be used to help configure your Windows system to be more
UNIX-like by creating an initial/etc/passwd from your system information. Its use is
essential on the NT series (Windows NT, 2000, and XP) to include Windows security
information, but the actual passwords are determined by Windows, not by the content of
/etc/passwd . On the Win9x series (Windows 95, 98, and Me) the password field must
be replaced by the output ofcrypt your_password if remote access is desired. To
initially set up your machine if you are a local user, you’d do something like this:

Example 3-7. Setting up the passwd file for local accounts

$ mkdir /etc
$ mkpasswd -l > /etc/passwd

Note that this information is static. If you change the user information in your system,
you’ll need to regenerate the passwd file for it to have the new information.

The -d and-l options allow you to specify where the information comes from, the lo-
cal machine or the domain (default or given), or both. With the-d option the program
contacts the Domain Controller, which my be unreachable or have restricted access. An

54

Chapter 3. Using Cygwin

entry for the current domain user can then be created by using the option-c together
with -l , but -c has no effect when used with-d . The-o option allows for special cases
(such as multiple domains) where the UIDs might match otherwise. The-g option cre-
ates a local user that corresponds to each local group. This is because NT assigns groups
file ownership. The-m option bypasses the current mount table so that, for example,
two users who have a Windows home directory of H: could mount them differently.
The -s option omits the NT Security Identifier (SID). For more information on SIDs,
seeSection 2.4in the Cygwin User’s Guide. The-p option causesmkpasswdto use the
specified prefix instead of the account home dir or/home/ . For example, this command:

Example 3-8. Using an alternate home root

$ mkpasswd -l -p "$(cygpath -H)" > /etc/passwd

would put local users’ home directories in the Windows ’Profiles’ directory. On Win9x
machines the-u option creates an entry for the specified user. On the NT series it re-
stricts the output to that user, greatly reducing the amount of time it takes in a large
domain.

3.6.8. mount

Usage: mount [OPTION] [<win32path> <posixpath>]
Display information about mounted filesystems, or mount a filesystem

-b, --binary (default) text files are equivalent to binary files
(newline = \n)

-c, --change-cygdrive-prefix change the cygdrive path prefix to <posixpath>
-f, --force force mount, don’t warn about missing mount

point directories
-h, --help output usage information and exit
-m, --mount-commands write mount commands to replace user and

system mount points and cygdrive prefixes
-o, --options X[,X...] specify mount options
-p, --show-cygdrive-prefix show user and/or system cygdrive path prefix
-s, --system (default) add system-wide mount point
-t, --text text files get \r\n line endings
-u, --user add user-only mount point
-v, --version output version information and exit
-x, --executable treat all files under mount point as executables
-E, --no-executable treat all files under mount point as

55

Chapter 3. Using Cygwin

non-executables
-X, --cygwin-executable treat all files under mount point as cygwin

executables

The mount program is used to map your drives and shares onto Cygwin’s simulated
POSIX directory tree, much like as is done by mount commands on typical UNIX sys-
tems. Please seeSection 3.1.2for more information on the concepts behind the Cygwin
POSIX file system and strategies for using mounts. To remove mounts, useumount

3.6.8.1. Using mount

If you just typemount with no parameters, it will display the current mount table for
you.

Example 3-9. Displaying the current set of mount points

c:\cygwin\> mount
c:\cygwin\bin on /usr/bin type system (binmode)
c:\cygwin\lib on /usr/lib type system (binmode)
c:\cygwin on / type system (binmode)
c: on /c type user (binmode,noumount)
d: on /d type user (binmode,noumount)

In this example, c:\cygwin is the POSIX root and D drive is mapped to/d . Note that in
this case, the root mount is a system-wide mount point that is visible to all users running
Cygwin programs, whereas the/d mount is only visible to the current user.

The mount utility is also the mechanism for adding new mounts to the mount table.
The following example demonstrates how to mount the directory\\pollux\home\joe\
data to /data .

Example 3-10. Adding mount points

c:\cygwin\> ls /data
ls: /data: No such file or directory
c:\cygwin\> mount \\pollux\home\joe\data /data
mount: warning - /data does not exist!
c:\cygwin\> mount
\\pollux\home\joe\data on /data type sytem (binmode)
c:\cygwin\bin on /usr/bin type system (binmode)
c:\cygwin\lib on /usr/lib type system (binmode)
c:\cygwin on / type system (binmode)
c: on /c type user (binmode,noumount)

56

Chapter 3. Using Cygwin

d: on /d type user (binmode,noumount)

Note thatmount was invoked from the Windows command shell in the previous exam-
ple. In many Unix shells, including bash, it is legal and convenient to use the forward "/"
in Win32 pathnames since the "\" is the shell’s escape character.

The-s flag tomount is used to add a mount in the system-wide mount table used by all
Cygwin users on the system, instead of the user-specific one. System-wide mounts are
displayed bymount as being of the "system" type, as is the case for the/ partition in
the last example. Under Windows NT, only those users with Administrator priviledges
are permitted to modify the system-wide mount table.

Note that a given POSIX path may only exist once in the user table and once in the
global, system-wide table. Attempts to replace the mount will fail with a busy error. The
-f (force) flag causes the old mount to be silently replaced with the new one. It will also
silence warnings about the non-existence of directories at the Win32 path location.

The -b flag is used to instruct Cygwin to treat binary and text files in the same manner
by default. Binary mode mounts are marked as "binmode" in the Flags column ofmount
output. By default, mounts are in text mode ("textmode" in the Flags column).

Normally, files ending in certain extensions (.exe, .com, .bat, .cmd) are assumed to be
executable. Files whose first two characters begin with ’#!’ are also considered to be
executable. The-x flag is used to instruct Cygwin that the mounted file is "executable".
If the -x flag is used with a directory then all files in the directory are executable. This
option allows other files to be marked as executable and avoids the overhead of opening
each file to check for a ’#!’. The-X option is very similar to-x , but also prevents Cygwin
from setting up commands and environment variables for a normal Windows program,
adding another small performance gain. The opposite of these flags is the-E flag, which
means that no files should be marked as executable.

The-m option causes themount utility to output a series of commands that could recre-
ate both user and system mount points. You can save this output as a backup when
experimenting with the mount table. It also makes moving your settings to a different
machine much easier.

The -o option is the method via which various options about the mount point may be
recorded. The following options are available (note that most of the options are dupli-
cates of other mount flags):

user - mount lives user-specific mount
system - mount lives in system table (default)
binary - files default to binary mode (default)
text - files default to CRLF text mode line endings
exec - files below mount point are all executable

57

Chapter 3. Using Cygwin

notexec - files below mount point are not executable
cygexec - files below mount point are all cygwin executables
nosuid - no suid files are allowed (currently unimplemented)
managed - directory is managed by cygwin. Mixed case and special

characters in filenames are allowed.

3.6.8.2. Cygdrive mount points

Whenever Cygwin cannot use any of the existing mounts to convert from a particular
Win32 path to a POSIX one, Cygwin will, instead, convert to a POSIX path using a
default mount point:/cygdrive . For example, if Cygwin accessesz:\foo and the z
drive is not currently in the mount table, thenz:\ will be accessible as/cygdrive/
z. Themount utility can be used to change this default automount prefix through the
use of the "--change-cygdrive-prefix" option. In the following example, we will set the
automount prefix to/ :

Example 3-11. Changing the default prefix

c:\cygwin\> mount --change-cygdrive-prefix /

Note that if you set a new prefix in this manner, you can specify the-s flag to make
this the system-wide default prefix. By default, the cygdrive-prefix applies only to the
system-wide setting. You can always see the user and system cygdrive prefixes with
the -p option. Using the-b flag with --change-cygdrive-prefix makes all new
automounted filesystems default to binary mode file accesses.

3.6.8.3. Limitations

Limitations: there is a hard-coded limit of 30 mount points. Also, although you can
mount to pathnames that do not start with "/", there is no way to make use of such
mount points.

Normally the POSIX mount point in Cygwin is an existing empty directory, as in stan-
dard UNIX. If this is the case, or if there is a place-holder for the mount point (such as
a file, a symbolic link pointing anywhere, or a non-empty directory), you will get the
expected behavior. Files present in a mount point directory before the mount become
invisible to Cygwin programs.

It is sometimes desirable to mount to a non-existent directory, for example to avoid
cluttering the root directory with names such asa, b, c pointing to disks. Although

58

Chapter 3. Using Cygwin

mount will give you a warning, most everything will work properly when you refer to
the mount point explicitly. Some strange effects can occur however. For example if your
current working directory is/dir , say, and/dir/mtpt is a mount point, thenmtpt will
not show up in anls or echo *command andfind . will not find mtpt .

3.6.9. passwd

Usage: passwd [OPTION] [USER]
Change USER’s password or password attributes.

User operations:
-l, --lock lock USER’s account.
-u, --unlock unlock USER’s account.
-c, --cannot-change USER can’t change password.
-C, --can-change USER can change password.
-e, --never-expires USER’s password never expires.
-E, --expires USER’s password expires according to system’s

password aging rule.
-p, --pwd-not-required no password required for USER.
-P, --pwd-required password is required for USER.

System operations:
-i, --inactive NUM set NUM of days before inactive accounts are disabled

(inactive accounts are those with expired passwords).
-n, --minage DAYS set system minimum password age to DAYS days.
-x, --maxage DAYS set system maximum password age to DAYS days.
-L, --length LEN set system minimum password length to LEN.

Other options:
-S, --status display password status for USER (locked, expired,

etc.) plus global system password settings.
-h, --help output usage information and exit.
-v, --version output version information and exit.

If no option is given, change USER’s password. If no user name is given,
operate on current user. System operations must not be mixed with user
operations. Don’t specify a USER when triggering a system operation.

passwdchanges passwords for user accounts. A normal user may only change the pass-
word for their own account, but administrators may change passwords on any account.
passwdalso changes account information, such as password expiry dates and intervals.

59

Chapter 3. Using Cygwin

For password changes, the user is first prompted for their old password, if one is present.
This password is then encrypted and compared against the stored password. The user
has only one chance to enter the correct password. The administrators are permitted to
bypass this step so that forgotten passwords may be changed.

The user is then prompted for a replacement password.passwdwill prompt twice for
this replacement and compare the second entry against the first. Both entries are required
to match in order for the password to be changed.

After the password has been entered, password aging information is checked to see if the
user is permitted to change their password at this time. If not,passwdrefuses to change
the password and exits.

To get current password status information, use the-S option. Administrators can use
passwdto perform several account maintenance functions (users may perform some of
these functions on their own accounts). Accounts may be locked with the-l flag and
unlocked with the-u flag. Similarly,-c disables a user’s ability to change passwords,
and-C allows a user to change passwords. For password expiry, the-e option disables
expiration, while the-E option causes the password to expire according to the system’s
normal aging rules. Use-p to disable the password requirement for a user, or-P to
require a password.

Administrators can also usepasswdto change system-wide password expiry and length
requirements with the-i , -n , -x , and-L options. The-i option is used to disable an
account after the password has been expired for a number of days. After a user account
has had an expired password forNUM days, the user may no longer sign on to the ac-
count. The-n option is used to set the minimum number of days before a password may
be changed. The user will not be permitted to change the password untilMINDAYSdays
have elapsed. The-x option is used to set the maximum number of days a password
remains valid. AfterMAXDAYSdays, the password is required to be changed. Allowed
values for the above options are 0 to 999. The-L option sets the minimum length of
allowed passwords for users who don’t belong to the administrators group toLEN char-
acters. Allowed values for the minimum password length are 0 to 14. In any of the above
cases, a value of 0 means ‘no restrictions’.

Limitations: Users may not be able to change their password on some systems.

3.6.10. ps

Usage: ps [-aefls] [-u UID]
Report process status

60

Chapter 3. Using Cygwin

-a, --all show processes of all users
-e, --everyone show processes of all users
-f, --full show process uids, ppids
-h, --help output usage information and exit
-l, --long show process uids, ppids, pgids, winpids
-s, --summary show process summary
-u, --user list processes owned by UID
-v, --version output version information and exit
-W, --windows show windows as well as cygwin processes

With no options, ps outputs the long format by default

Theps program gives the status of all the Cygwin processes running on the system (ps
= "process status"). Due to the limitations of simulating a POSIX environment under
Windows, there is little information to give.

The PID column is the process ID you need to give to thekill command. The PPID is
the parent process ID, and PGID is the process group ID. The WINPID column is the
process ID displayed by NT’s Task Manager program. The TTY column gives which
pseudo-terminal a process is running on, or a’?’ for services. The UID column shows
which user owns each process. STIME is the time the process was started, and COM-
MAND gives the name of the program running.

By defaultps will only show processes owned by the current user. With either the-a

or -e option, all user’s processes (and system processes) are listed. There are historical
UNIX reasons for the synonomous options, which are functionally identical. The-f

option outputs a "full" listing with usernames for UIDs. The-l option is the default
display mode, showing a "long" listing with all the above columns. The other display
option is-s , which outputs a shorter listing of just PID, TTY, STIME, and COMMAND.
The -u option allows you to show only processes owned by a specific user. The-W

option causesps show non-Cygwin Windows processes as well as Cygwin processes.
The WINPID is also the PID, and they can be killed with the Cygwinkill command’s
-f option.

3.6.11. regtool

Usage: regtool.exe [OPTION] (add | check | get | list | remove | unset) KEY
View or edit the Win32 registry

Actions:
add KEY\SUBKEY add new SUBKEY
check KEY exit 0 if KEY exists, 1 if not
get KEY\VALUE prints VALUE to stdout

61

Chapter 3. Using Cygwin

list KEY list SUBKEYs and VALUEs
remove KEY remove KEY
set KEY\VALUE [data ...] set VALUE
unset KEY\VALUE removes VALUE from KEY

Options for ’list’ Action:
-k, --keys print only KEYs
-l, --list print only VALUEs
-p, --postfix like ls -p, appends ’\’ postfix to KEY names

Options for ’set’ Action:
-e, --expand-string set type to REG_EXPAND_SZ
-i, --integer set type to REG_DWORD
-m, --multi-string set type to REG_MULTI_SZ
-s, --string set type to REG_SZ

Options for ’set’ and ’unset’ Actions:
-K<c>, --key-separator[=]<c> set key separator to <c> instead of ’\’

Other Options:
-h, --help output usage information and exit
-q, --quiet no error output, just nonzero return if KEY/VALUE missing
-v, --verbose verbose output, including VALUE contents when applicable
-V, --version output version information and exit

KEY is in the format [host]\prefix\KEY\KEY\VALUE, where host is optional
remote host in either \\hostname or hostname: format and prefix is any of:

root HKCR HKEY_CLASSES_ROOT (local only)
config HKCC HKEY_CURRENT_CONFIG (local only)
user HKCU HKEY_CURRENT_USER (local only)
machine HKLM HKEY_LOCAL_MACHINE
users HKU HKEY_USERS

You can use forward slash (’/’) as a separator instead of backslash, in
that case backslash is treated as escape character
Example: regtool.exe get ’\user\software\Microsoft\Clock\iFormat’

The regtool program allows shell scripts to access and modify the Windows registry.
Note that modifying the Windows registry is dangerous, and carelessness here can result
in an unusable system. Be careful.

The-v option means "verbose". For most commands, this causes additional or lengthier
messages to be printed. Conversely, the-q option supresses error messages, so you can
use the exit status of the program to detect if a key exists or not (for example).

62

Chapter 3. Using Cygwin

You must provideregtool with anactionfollowing options (if any). Currently, the action
must beadd , set , check , get , list , remove , set , or unset .

Theadd action adds a new key. Thecheck action checks to see if a key exists (the exit
code of the program is zero if it does, nonzero if it does not). Theget action gets the
value of a value of a key, and prints it (and nothing else) to stdout. Note: if the value
doesn’t exist, an error message is printed and the program returns a non-zero exit code.
If you give -q , it doesn’t print the message but does return the non-zero exit code.

The list action lists the subkeys and values belonging to the given key. Withlist , the
-k option instructsregtool to print only KEYs, and the-l option to print only VALUEs.
The -p option postfixes a’/’ to each KEY, but leave VALUEs with no postfix. The
remove action removes a key. Note that you may need to remove everything in the
key before you may remove it, but don’t rely on this stopping you from accidentally
removing too much.

The set action sets a value within a key.-e means it’s an expanding string
(REG_EXPAND_SZ) that contains embedded environment variables.-i means the
value is an integer (REG_DWORD).-m means it’s a multi-string (REG_MULTI_SZ).
-s means the value is a string (REG_SZ). If you don’t specify one of these,regtool
tries to guess the type based on the value you give. If it looks like a number, it’s a
DWORD. If it starts with a percent, it’s an expanding string. If you give multiple
values, it’s a multi-string. Else, it’s a regular string. Theunset action removes a value
from a key.

By default, the last "\" or "/" is assumed to be the separator between the key and the
value. You can use the-K option to provide an alternate key/value separator character.

3.6.12. setfacl

Usage: setfacl [-r] (-f ACL_FILE | -s acl_entries) FILE...
setfacl [-r] ([-d acl_entries] [-m acl_entries]) FILE...

Modify file and directory access control lists (ACLs)

-d, --delete delete one or more specified ACL entries
-f, --file set ACL entries for FILE to ACL entries read

from a ACL_FILE
-m, --modify modify one or more specified ACL entries
-r, --replace replace mask entry with maximum permissions

needed for the file group class
-s, --substitute substitute specified ACL entries for the

ACL of FILE

63

Chapter 3. Using Cygwin

-h, --help output usage information and exit
-v, --version output version information and exit

At least one of (-d, -f, -m, -s) must be specified

For each file given as parameter,setfaclwill either replace its complete ACL (-s , -f),
or it will add, modify, or delete ACL entries. For more information on Cygwin and
Windows ACLs, see seeSection 2.4in the Cygwin User’s Guide.

Acl_entries are one or more comma-separated ACL entries from the following list:

u[ser]::perm
u[ser]:uid:perm
g[roup]::perm
g[roup]:gid:perm
m[ask]::perm
o[ther]::perm

Default entries are like the above with the additional default identifier. For example:

d[efault]:u[ser]:uid:perm

permis either a 3-char permissions string in the form "rwx" with the character’-’ for no
permission or it is the octal representation of the permissions, a value from 0 (equivalent
to "---") to 7 ("rwx"). uid is a user name or a numerical uid.gid is a group name or a
numerical gid.

The following options are supported:

-d Delete one or more specified entries from the file’s ACL. The owner, group and
others entries must not be deleted. Acl_entries to be deleted should be specified without
permissions, as in the following list:

u[ser]:uid
g[roup]:gid
d[efault]:u[ser]:uid
d[efault]:g[roup]:gid
d[efault]:m[ask]:
d[efault]:o[ther]:

-f Take the Acl_entries from ACL_FILE one per line. Whitespace characters are ig-
nored, and the character "#" may be used to start a comment. The special filename "-"

64

Chapter 3. Using Cygwin

indicates reading from stdin. Note that you can use this withgetfaclandsetfaclto copy
ACLs from one file to another:

$ getfacl source_file | setfacl -f - target_file

Required entries are: one user entry for the owner of the file, one group entry for the
group of the file, and one other entry.

If additional user and group entries are given: a mask entry for the file group class of the
file, and no duplicate user or group entries with the same uid/gid.

If it is a directory: one default user entry for the owner of the file, one default group
entry for the group of the file, one default mask entry for the file group class, and one
default other entry.

-m Add or modify one or more specified ACL entries. Acl_entries is a comma-separated
list of entries from the same list as above.

-r Causes the permissions specified in the mask entry to be ignored and replaced by the
maximum permissions needed for the file group class.

-s Like -f , but substitute the file’s ACL with Acl_entries specified in a
comma-separated list on the command line.

While the-d and-m options may be used in the same command, the-f and-s options
may be used only exclusively.

Directories may contain default ACL entries. Files created in a directory that contains
default ACL entries will have permissions according to the combination of the current
umask, the explicit permissions requested and the default ACL entries

Limitations: Under Cygwin, the default ACL entries are not taken into account currently.

3.6.13. ssp

Usage: ssp [options] low_pc high_pc command...
Single-step profile COMMAND

-c, --console-trace trace every EIP value to the console. *Lots* slower.
-d, --disable disable single-stepping by default; use

OutputDebugString ("ssp on") to enable stepping
-e, --enable enable single-stepping by default; use

OutputDebugString ("ssp off") to disable stepping
-h, --help output usage information and exit

65

Chapter 3. Using Cygwin

-l, --dll enable dll profiling. A chart of relative DLL usage
is produced after the run.

-s, --sub-threads trace sub-threads too. Dangerous if you have
race conditions.

-t, --trace-eip trace every EIP value to a file TRACE.SSP. This
gets big *fast*.

-v, --verbose output verbose messages about debug events.
-V, --version output version information and exit

Example: ssp 0x401000 0x403000 hello.exe

SSP - The Single Step Profiler

Original Author: DJ Delorie

The SSP is a program that uses the Win32 debug API to run a program one ASM in-
struction at a time. It records the location of each instruction used, how many times that
instruction is used, and all function calls. The results are saved in a format that is usable
by the profiling programgprof, althoughgprof will claim the values are seconds, they
really are instruction counts. More on that later.

Because the SSP was originally designed to profile the cygwin DLL, it does not auto-
matically select a block of code to report statistics on. You must specify the range of
memory addresses to keep track of manually, but it’s not hard to figure out what to spec-
ify. Use the "objdump" program to determine the bounds of the target’s ".text" section.
Let’s say we’re profiling cygwin1.dll. Make sure you’ve built it with debug symbols
(elsegprof won’t run) and run objdump like this:

$ objdump -h cygwin1.dll

It will print a report like this:

cygwin1.dll: file format pei-i386

Sections:
Idx Name Size VMA LMA File off Algn

0 .text 0007ea00 61001000 61001000 00000400 2**2
CONTENTS, ALLOC, LOAD, READONLY, CODE, DATA

1 .data 00008000 61080000 61080000 0007ee00 2**2
CONTENTS, ALLOC, LOAD, DATA

. . .

66

Chapter 3. Using Cygwin

The only information we’re concerned with are the VMA of the .text section and the
VMA of the section after it (sections are usually contiguous; you can also add the Size
to the VMA to get the end address). In this case, the VMA is 0x61001000 and the end-
ing address is either 0x61080000 (start of .data method) or 0x0x6107fa00 (VMA+Size
method).

There are two basic ways to use SSP - either profiling a whole program, or selectively
profiling parts of the program.

To profile a whole program, just runsspwithout options. By default, it will step the
whole program. Here’s a simple example, using the numbers above:

$ ssp 0x61001000 0x61080000 hello.exe

This will step the whole program. It will take at least 8 minutes on a PII/300 (yes, really).
When it’s done, it will create a file called "gmon.out". You can turn this data file into a
readable report withgprof:

$ gprof -b cygwin1.dll

The "-b" means ’skip the help pages’. You can omit this until you’re familiar with the
report layout. Thegprof documentation explains a lot about this report, butsspchanges
a few things. For example, the first part of the report reports the amount of time spent in
each function, like this:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls ms/call ms/call name
10.02 231.22 72.43 46 1574.57 1574.57 strcspn

7.95 288.70 57.48 130 442.15 442.15 strncasematch

The "seconds" columns are really CPU opcodes, 1/100 second per opcode. So,
"231.22" above means 23,122 opcodes. The ms/call values are 10x too big; 1574.57
means 157.457 opcodes per call. Similar adjustments need to be made for the "self" and
"children" columns in the second part of the report.

OK, so now we’ve got a huge report that took a long time to generate, and we’ve iden-
tified a spot we want to work on optimizing. Let’s say it’s the time() function. We can
use SSP to selectively profile this function by using OutputDebugString() to control SSP
from within the program. Here’s a sample program:

#include <windows.h>
main()
{

67

Chapter 3. Using Cygwin

time_t t;
OutputDebugString("ssp on");
time(&t);
OutputDebugString("ssp off");

}

Then, add the-d option to ssp to default to *disabling* profiling. The program will run
at full speed until the first OutputDebugString, then step until the second. You can then
usegprof (as usual) to see the performance profile for just that portion of the program’s
execution.

There are many options to ssp. Since step-profiling makes your program run about 1,000
times slower than normal, it’s best to understand all the options so that you can narrow
down the parts of your program you need to single-step.

-v - verbose. This prints messages about threads starting and stopping,
OutputDebugString calls, DLLs loading, etc.

-t and -c - tracing. With-t , *every* step’s address is written to the file "trace.ssp".
This can be used to help debug functions, since it can trace multiple threads. Clever use
of scripts can match addresses with disassembled opcodes if needed. Warning: creates
huge files, very quickly.-c prints each address to the console, useful for debugging
key chunks of assembler. Useaddr2line -C -f -s -e foo.exe < trace.ssp

> lines.ssp and thenperl cvttrace to convert to symbolic traces.

-s - subthreads. Usually, you only need to trace the main thread, but sometimes you
need to trace all threads, so this enables that. It’s also needed when you want to profile a
function that only a subthread calls. However, using OutputDebugString automatically
enables profiling on the thread that called it, not the main thread.

-l - dll profiling. Generates a pretty table of how much time was spent in each dll the
program used. No sense optimizing a function in your program if most of the time is
spent in the DLL. I usually use the-v , -s , and-l options:

$ ssp -v -s -l -d 0x61001000 0x61080000 hello.exe

3.6.14. strace

Usage: strace.exe [OPTIONS] <command-line>
Usage: strace.exe [OPTIONS] -p <pid>

68

Chapter 3. Using Cygwin

Trace system calls and signals

-b, --buffer-size=SIZE set size of output file buffer
-d, --no-delta don’t display the delta-t microsecond timestamp
-f, --trace-children trace child processes (toggle - default true)
-h, --help output usage information and exit
-m, --mask=MASK set message filter mask
-n, --crack-error-numbers output descriptive text instead of error

numbers for Windows errors
-o, --output=FILENAME set output file to FILENAME
-p, --pid=n attach to executing program with cygwin pid n
-S, --flush-period=PERIOD flush buffered strace output every PERIOD secs
-t, --timestamp use an absolute hh:mm:ss timestamp insted of

the default microsecond timestamp. Implies -d
-T, --toggle toggle tracing in a process already being

traced. Requires -p <pid>
-v, --version output version information and exit
-w, --new-window spawn program under test in a new window

MASK can be any combination of the following mnemonics and/or hex values
(0x is optional). Combine masks with ’+’ or ’,’ like so:

--mask=wm+system,malloc+0x00800

Mnemonic Hex Corresponding Def Description
===
all 0x00001 (_STRACE_ALL) All strace messages.
flush 0x00002 (_STRACE_FLUSH) Flush output buffer after each message.
inherit 0x00004 (_STRACE_INHERIT) Children inherit mask from parent.
uhoh 0x00008 (_STRACE_UHOH) Unusual or weird phenomenon.
syscall 0x00010 (_STRACE_SYSCALL) System calls.
startup 0x00020 (_STRACE_STARTUP) argc/envp printout at startup.
debug 0x00040 (_STRACE_DEBUG) Info to help debugging.
paranoid 0x00080 (_STRACE_PARANOID) Paranoid info.
termios 0x00100 (_STRACE_TERMIOS) Info for debugging termios stuff.
select 0x00200 (_STRACE_SELECT) Info on ugly select internals.
wm 0x00400 (_STRACE_WM) Trace Windows msgs (enable _strace_wm).
sigp 0x00800 (_STRACE_SIGP) Trace signal and process handling.
minimal 0x01000 (_STRACE_MINIMAL) Very minimal strace output.
exitdump 0x04000 (_STRACE_EXITDUMP) Dump strace cache on exit.
system 0x08000 (_STRACE_SYSTEM) Serious error; goes to console and log.
nomutex 0x10000 (_STRACE_NOMUTEX) Don’t use mutex for synchronization.
malloc 0x20000 (_STRACE_MALLOC) Trace malloc calls.
thread 0x40000 (_STRACE_THREAD) Thread-locking calls.

69

Chapter 3. Using Cygwin

The strace program executes a program, and optionally the children of the program,
reporting any Cygwin DLL output from the program(s) to stdout, or to a file with the-o

option. With the-w option, you can start an strace session in a new window, for example:

$ strace -o tracing_output -w sh -c ’while true; do echo "tracing..."; done’ &

This is particularly useful forstracesessions that take a long time to complete.

Note thatstrace is a standalone Windows program and so does not rely on the Cygwin
DLL itself (you can verify this withcygcheck). As a result it does not understand POSIX
pathnames or symlinks. This program is mainly useful for debugging the Cygwin DLL
itself.

3.6.15. umount

Usage: umount.exe [OPTION] [<posixpath>]
Unmount filesystems

-A, --remove-all-mounts remove all mounts
-c, --remove-cygdrive-prefix remove cygdrive prefix
-h, --help output usage information and exit
-s, --system remove system mount (default)
-S, --remove-system-mounts remove all system mounts
-u, --user remove user mount
-U, --remove-user-mounts remove all user mounts
-v, --version output version information and exit

The umount program removes mounts from the mount table. If you specify a POSIX
path that corresponds to a current mount point,umount will remove it from the sys-
tem registry area. (Administrator priviledges are required). The-u flag may be used to
specify removing the mount from the user-specific registry area instead.

Theumount utility may also be used to remove all mounts of a particular type. With the
extended options it is possible to remove all mounts (-A), all cygdrive automatically-
mounted mounts (-c), all mounts in the current user’s registry area (-U), or all mounts
in the system-wide registry area (-S) (with Administrator privileges).

SeeSection 3.6.8for more information on the mount table.

70

Chapter 3. Using Cygwin

3.7. Using Cygwin effectively with Windows
Cygwin is not a full operating system, and so must rely on Windows for accomplishing
some tasks. For example, Cygwin provides a POSIX view of the Windows filesystem,
but does not provide filesystem drivers of its own. Therefore part of using Cygwin ef-
fectively is learning to use Windows effectively. Many Windows utilities provide a good
way to interact with Cygwin’s predominately command-line environment. For example,
ipconfig.exeprovides information about network configuration, andnet.exeviews and
configures network file and printer resources. Most of these tools support the/? switch
to display usage information.

Unfortunately, no standard set of tools included with all versions of Windows exists.
If you are unfamiliar with the tools available on your system, here is a general
guide. Windows 95, 98, and ME have very limited command-line configuration
tools. Windows NT 4.0 has much better coverage, which Windows 2000 and
XP expanded. Microsoft also provides free downloads for Windows NT 4.0
(the Resource Kit Support Tools), Windows 2000 (the Resource Kit Tools), and
XP (the Windows Support Tools). Additionally, many independent sites such as
download.com (http://download.com.com), simtel.net (http://simtel.net), and
sysinternals.com (http://sysinternals.com) provide command-line utilities. A few
Windows tools, such asfind.exeandsort.exe, may conflict with the Cygwin versions;
make sure that you use the full path (/usr/bin/find) or that your Cygwinbin directory
comes first in your PATH.

3.7.1. Pathnames
Windows programs do not understand POSIX pathnames, so any arguments that refer-
ence the filesystem must be in Windows (or DOS) format or translated. Cygwin provides
thecygpath utility for converting between Windows and POSIX paths. A complete de-
scription of its options and examples of its usage are inSection 3.6.2, including a shell
script for starting Windows Explorer in any directory. The same format works for most
Windows programs, for example

notepad.exe "$(cygpath -aw "Desktop/Phone Numbers.txt")"

A few programs require a Windows-style, semicolon-delimited path list, whichcygpath
can translate from a POSIX path with the-p option. For example, a Java compilation
from bashmight look like this:

javac -cp "$(cygpath -pw "$CLASSPATH")" hello.java

71

http://download.com.com
http://simtel.net
http://sysinternals.com

Chapter 3. Using Cygwin

Since using quoting and subshells is somewhat awkward, it is often preferable to use
cygpath in shell scripts.

3.7.2. Console Programs
Another issue is receiving output from or giving input to the console-based Windows
programs. Unfortunately, interacting with Windows console applications is not a simple
matter of using a translation utility. Windows console applications and designed to run
undercommand.comor cmd.exe, and some do not deal gracefully with other situations.
Cygwin can receive console input only if it is also running in a console (DOS box) since
Windows does not provide any way to attach to the backend of the console device.
Another traditional Unix input/output method, ptys (pseudo-terminals), are supported
by Cygwin but not entirely by Windows. The basic problem is that a Cygwin pty is a
pipe and some Windows applications do not like having their input or output redirected
to pipes.

To help deal with these issues, Cygwin supports customizable levels of Windows verses
Unix compatibility behavior. To be most compatible with Windows programs, use a
DOS prompt, running only the occasional Cygwin command or script. Next would be to
runbashwith the default DOS box. To make Cygwin more Unix compatible in this case,
set CYGWIN=tty (seeSection 3.5). Alternatively, the optional rxvt package provides a
native-Windows version of the popular X11 terminal emulator (it is not necessary to set
CYGWIN=tty with rxvt). Usingrxvt.exe provides the most Unix-like environment, but
expect some compatibility problems with Windows programs.

3.7.3. Cygwin and Windows Networking
Many popular Cygwin packages, such as ncftp, lynx, and wget, require a network con-
nection. Since Cygwin relies on Windows for connectivity, if one of these tools is not
working as expected you may need to troubleshoot using Windows tools. The first test
is to see if you can reach the URL’s host withping.exe, one of the few utilities included
with every Windows version since Windows 95. If you chose to install the inetutils pack-
age, you may have both Windows and Cygwin versions of utilities such asftp andtelnet.
If you are having problems using one of these programs, see if the alternate one works
as expected.

There are a variety of other programs available for specific situations. If
your system does not have an always-on network connection, you may be
interested in rasdial.exe (or alternatives for Windows 95, 98, and ME) for

72

Chapter 3. Using Cygwin

automating dialup connections. Users who frequently change their network
configuration can script these changes withnetsh.exe (Windows 2000 and
XP). For proxy users, the open source NTLM Authorization Proxy Server
(http://apserver.sourceforge.net) or the no-charge Hummingbird SOCKS
Proxy (http://www.hummingbird.com/products/nc/socks/index.html) may
allow you to use Cygwin network programs in your environment.

3.7.4. The cygutils package
The optional cygutils package contains miscellaneous tools that are small enough to not
require their own package. It is not included in a default Cygwin install; select it from
the Utils category insetup.exe. Several of the cygutils tools are useful for interacting
with Windows.

One of the hassles of Unix-Windows interoperability is the different line endings on
text files. As mentioned inSection 3.2, Unix tools such astr can convert between CRLF
and LF endings, but cygutils provides several dedicated programs:conv, d2u, dos2unix,
u2d, andunix2dos. Use the--help switch for usage information.

3.7.5. Creating shortcuts with cygutils
Another problem area is between Unix-style links, which link one file to another, and
Microsoft .lnk files, which provide a shortcut to a file. They seem similar at first glance
but, in reality, are fairly different. By default, Cygwin uses a mechanism that creates
symbolic links that are compatible with standard Microsoft .lnk files. However, they do
not include much of the information that is available in a standard Microsoft shortcut,
such as the working directory, an icon, etc. The cygutils package includes amkshortcut
utility for creating standard Microsoft .lnk files.

If Cygwin handled these native shortcuts like any other symlink, you could not archive
Microsoft .lnk files intotar archives and keep all the information in them. After unpack-
ing, these shortcuts would have lost all the extra information and would be no different
than standard Cygwin symlinks. Therefore these two types of links are treated differ-
ently. Unfortunately, this means that the usual Unix way of creating and using symlinks
does not work with Windows shortcuts.

73

http://apserver.sourceforge.net
http://www.hummingbird.com/products/nc/socks/index.html

Chapter 3. Using Cygwin

3.7.6. Printing with cygutils
There are several options for printing from Cygwin, including thelpr found in cygutils
(not to be confused with the native Windowslpr.exe). The easiest way to use cygutils’
lpr is to specify a default device name in the PRINTER environment variable. You may
also specify a device on the command line with the-d or -P options, which will override
the environment variable setting.

A device name may be a UNC path (\\server_name\printer_name), a
reserved DOS device name (prn , lpt1), or a local port name that is mapped
to a printer share. Note that forward slashes may be used in a UNC path
(//server_name/printer_name), which is helpful when usinglpr from a shell that
uses the backslash as an escape character.

lpr sends raw data to the printer; no formatting is done. Many, but not all, printers
accept plain text as input. If your printer supports PostScript, packages such as a2ps and
enscript can prepare text files for printing. The ghostscript package also provides some
translation from PostScript to various native printer languages. Additionally, a native
Windows application for printing PostScript,gsprint, is available from the Ghostscript
website (http://www.cs.wisc.edu/~ghost/).

74

http://www.cs.wisc.edu/~ghost/

Chapter 4. Programming with Cygwin

4.1. Using GCC with Cygwin

4.1.1. Console Mode Applications
Use gcc to compile, just like under UNIX. Refer to the GCC User’s Guide for informa-
tion on standard usage and options. Here’s a simple example:

Example 4-1. Building Hello World with GCC

C:\> gcc hello.c -o hello.exe
C:\> hello.exe
Hello, World

C:\>

4.1.2. GUI Mode Applications
Cygwin allows you to build programs with full access to the standard Windows 32-bit
API, including the GUI functions as defined in any Microsoft or off-the-shelf publica-
tion. However, the process of building those applications is slightly different, as you’ll
be using the GNU tools instead of the Microsoft tools.

For the most part, your sources won’t need to change at all. However, you should remove
all __export attributes from functions and replace them like this:

int foo (int) __attribute__ ((__dllexport__));

int
foo (int i)

The Makefile is similar to any other UNIX-like Makefile, and like any other Cygwin
makefile. The only difference is that you usegcc -mwindowsto link your program into
a GUI application instead of a command-line application. Here’s an example:

myapp.exe : myapp.o myapp.res
gcc -mwindows myapp.o myapp.res -o $@

75

Chapter 4. Programming with Cygwin

myapp.res : myapp.rc resource.h
windres $< -O coff -o $@

Note the use ofwindres to compile the Windows resources into a COFF-format.res
file. That will include all the bitmaps, icons, and other resources you need, into one
handy object file. Normally, if you omitted the "-O coff" it would create a Windows
.res format file, but we can only link COFF objects. So, we tellwindres to produce a
COFF object, but for compatibility with the many examples that assume your linker can
handle Windows resource files directly, we maintain the.res naming convention. For
more information onwindres , consult the Binutils manual.

The following is a simple GUI-mode "Hello, World!" program to help get you started:

/*---*/
/* hellogui.c - gui hello world */
/* build: gcc -mwindows hellogui.c -o hellogui.exe */
/*---*/
#include <windows.h>

char glpszText[1024];

LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM);

int APIENTRY WinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR lpCmdLine,
int nCmdShow)

{
sprintf(glpszText,

"Hello World\nGetCommandLine(): [%s]\n"
"WinMain lpCmdLine: [%s]\n",
lpCmdLine, GetCommandLine());

WNDCLASSEX wcex;

wcex.cbSize = sizeof(wcex);
wcex.style = CS_HREDRAW | CS_VREDRAW;
wcex.lpfnWndProc = WndProc;
wcex.cbClsExtra = 0;
wcex.cbWndExtra = 0;
wcex.hInstance = hInstance;
wcex.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wcex.hCursor = LoadCursor(NULL, IDC_ARROW);

76

Chapter 4. Programming with Cygwin

wcex.hbrBackground = (HBRUSH)(COLOR_WINDOW+1);
wcex.lpszMenuName = NULL;
wcex.lpszClassName = "HELLO";
wcex.hIconSm = NULL;

if (!RegisterClassEx(&wcex))
return FALSE;

HWND hWnd;
hWnd = CreateWindow("HELLO", "Hello", WS_OVERLAPPEDWINDOW,

CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, NULL, NULL, hInstance, NULL);

if (!hWnd)
return FALSE;

ShowWindow(hWnd, nCmdShow);
UpdateWindow(hWnd);

MSG msg;
while (GetMessage(&msg, NULL, 0, 0))
{

TranslateMessage(&msg);
DispatchMessage(&msg);

}

return msg.wParam;
}

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)
{

PAINTSTRUCT ps;
HDC hdc;

switch (message)
{

case WM_PAINT:
hdc = BeginPaint(hWnd, &ps);
RECT rt;
GetClientRect(hWnd, &rt);
DrawText(hdc, glpszText, strlen(glpszText), &rt, DT_TOP | DT_LEFT);
EndPaint(hWnd, &ps);
break;

case WM_DESTROY:
PostQuitMessage(0);

77

Chapter 4. Programming with Cygwin

break;
default:

return DefWindowProc(hWnd, message, wParam, lParam);
}
return 0;

}

4.2. Debugging Cygwin Programs
When your program doesn’t work right, it usually has a "bug" in it, meaning there’s
something wrong with the program itself that is causing unexpected results or crashes.
Diagnosing these bugs and fixing them is made easy by special tools calleddebuggers.
In the case of Cygwin, the debugger is GDB, which stands for "GNU DeBugger". This
tool lets you run your program in a controlled environment where you can investigate
the state of your program while it is running or after it crashes. Crashing programs
sometimes create "core" files. In Cygwin these are regular text files that cannot be used
directly by GDB.

Before you can debug your program, you need to prepare your program for debugging.
What you need to do is add-g to all the other flags you use when compiling your sources
to objects.

Example 4-2. Compiling with -g

$ gcc -g -O2 -c myapp.c
$ gcc -g myapp.c -o myapp

What this does is add extra information to the objects (they get much bigger too) that tell
the debugger about line numbers, variable names, and other useful things. These extra
symbols and debugging information give your program enough information about the
original sources so that the debugger can make debugging much easier for you.

In Windows versions of GNUPro, GDB comes with a full-featured graphical interface.
In Cygwin Net distributions, GDB is only available as a command-line tool. To invoke
GDB, simply typegdb myapp.exeat the command prompt. It will display some text
telling you about itself, then(gdb) will appear to prompt you to enter commands.
Whenever you see this prompt, it means that gdb is waiting for you to type in a com-

78

Chapter 4. Programming with Cygwin

mand, likerun or help. Oh :-) typehelp to get help on the commands you can type in,
or read the [GDB User’s Manual] for a complete description of GDB and how to use it.

If your program crashes and you’re trying to figure out why it crashed, the best thing to
do is typerun and let your program run. After it crashes, you can typewhere to find out
where it crashed, orinfo locals to see the values of all the local variables. There’s also a
print that lets you look at individual variables or what pointers point to.

If your program is doing something unexpected, you can use thebreak command to tell
gdb to stop your program when it gets to a specific function or line number:

Example 4-3. "break" in gdb

(gdb) break my_function
(gdb) break 47

Now, when you typerun your program will stop at that "breakpoint" and you can use the
other gdb commands to look at the state of your program at that point, modify variables,
andstepthrough your program’s statements one at a time.

Note that you may specify additional arguments to therun command to provide
command-line arguments to your program. These two cases are the same as far as your
program is concerned:

Example 4-4. Debugging with command line arguments

$ myprog -t foo --queue 47

$ gdb myprog
(gdb) run -t foo --queue 47

4.3. Building and Using DLLs
DLLs are Dynamic Link Libraries, which means that they’re linked into your program
at run time instead of build time. There are three parts to a DLL:

• the exports
• the code and data
• the import library

79

Chapter 4. Programming with Cygwin

The code and data are the parts you write - functions, variables, etc. All these are merged
together, like if you were building one big object files, and put into the dll. They are not
put into your .exe at all.

The exports contains a list of functions and variables that the dll makes available to other
programs. Think of this as the list of "global" symbols, the rest being hidden. Normally,
you’d create this list by hand with a text editor, but it’s possible to do it automatically
from the list of functions in your code. Thedlltool program creates the exports section
of the dll from your text file of exported symbols.

The import library is a regular UNIX-like.a library, but it only contains the tiny bit of
information needed to tell the OS how your program interacts with ("imports") the dll.
This information is linked into your.exe . This is also generated bydlltool .

4.3.1. Building DLLs
This page gives only a few simple examples of gcc’s DLL-building capabilities. To begin
an exploration of the many additional options, see the gcc documentation and website,
currently athttp://gcc.gnu.org/

Let’s go through a simple example of how to build a dll. For this example, we’ll use a
single filemyprog.c for the program (myprog.exe) and a single filemydll.c for the
contents of the dll (mydll.dll).

Fortunately, with the latest gcc and binutils the process for building a dll is now pretty
simple. Say you want to build this minimal function in mydll.c:

#include <stdio.h>

int
hello()
{

printf ("Hello World!\n");
}

First compile mydll.c to object code:

gcc -c mydll.c

Then, tell gcc that it is building a shared library:

gcc -shared -o mydll.dll mydll.o

That’s it! To finish up the example, you can now link to the dll with a simple program:

80

http://gcc.gnu.org/

Chapter 4. Programming with Cygwin

int
main ()
{

hello ();
}

Then link to your dll with a command like:

gcc -o myprog myprog.ca -L./ -lmydll

However, if you are building a dll as an export library, you will probably want to use the
complete syntax:

gcc -shared -o cyg${module}.dll \
-Wl,--out-implib=lib${module}.dll.a \
-Wl,--export-all-symbols \
-Wl,--enable-auto-import \
-Wl,--whole-archive ${old_libs} \
-Wl,--no-whole-archive ${dependency_libs}

The name of your library is${module} , prefixed withcyg for the DLL andlib for
the import library. Cygwin DLLs use thecyg prefix to differentiate them from native-
Windows MinGW DLLs, see the MinGW website (http://mingw.org) for more de-
tails. ${old_libs} are all your object files, bundled together in static libs or single
object files and the${dependency_libs} are import libs you need to link against, e.g
’-lpng -lz -L/usr/local/special -lmyspeciallib’ .

4.3.2. Linking Against DLLs
If you have an existing DLL already, you need to build a Cygwin-compatible import
library. If you have the source to compile the DLL, seeSection 4.3.1for details on
having gcc build one for you. If you do not have the source or a supplied working
import library, you can get most of the way by creating a .def file with these commands
(you might need to do this inbash for the quoting to work correctly):

echo EXPORTS > foo.def
nm foo.dll | grep ’ T _’ | sed ’s/.* T _//’ >> foo.def

Note that this will only work if the DLL is not stripped. Otherwise you will get an error
message: "No symbols in foo.dll".

Once you have the.def file, you can create an import library from it like this:

81

http://mingw.org

Chapter 4. Programming with Cygwin

dlltool --def foo.def --dllname foo.dll --output-lib foo.a

4.4. Defining Windows Resources
windres reads a Windows resource file (*.rc) and converts it to a res or coff file. The
syntax and semantics of the input file are the same as for any other resource compiler,
so please refer to any publication describing the Windows resource format for details.
Also, thewindres program itself is fully documented in the Binutils manual. Here’s an
example of using it in a project:

myapp.exe : myapp.o myapp.res
gcc -mwindows myapp.o myapp.res -o $@

myapp.res : myapp.rc resource.h
windres $< -O coff -o $@

What follows is a quick-reference to the syntaxwindres supports.

id ACCELERATORS suboptions
BEG
"^C" 12
"Q" 12
65 12
65 12 , VIRTKEY ASCII NOINVERT SHIFT CONTROL ALT
65 12 , VIRTKEY, ASCII, NOINVERT, SHIFT, CONTROL, ALT
(12 is an acc_id)
END

SHIFT, CONTROL, ALT require VIRTKEY

id BITMAP memflags "filename"
memflags defaults to MOVEABLE

id CURSOR memflags "filename"
memflags defaults to MOVEABLE,DISCARDABLE

id DIALOG memflags exstyle x,y,width,height styles BEG controls END
id DIALOGEX memflags exstyle x,y,width,height styles BEG controls END

82

Chapter 4. Programming with Cygwin

id DIALOGEX memflags exstyle x,y,width,height,helpid styles BEG controls END

memflags defaults to MOVEABLE
exstyle may be EXSTYLE=number
styles: CAPTION "string"

CLASS id
STYLE FOO | NOT FOO | (12)
EXSTYLE number
FONT number, "name"
FONT number, "name",weight,italic
MENU id
CHARACTERISTICS number
LANGUAGE number,number
VERSIONK number

controls:
AUTO3STATE params
AUTOCHECKBOX params
AUTORADIOBUTTON params
BEDIT params
CHECKBOX params
COMBOBOX params
CONTROL ["name",] id, class, style, x,y,w,h [,exstyle] [data]
CONTROL ["name",] id, class, style, x,y,w,h, exstyle, helpid [data]
CTEXT params
DEFPUSHBUTTON params
EDITTEXT params
GROUPBOX params
HEDIT params
ICON ["name",] id, x,y [data]
ICON ["name",] id, x,y,w,h, style, exstyle [data]
ICON ["name",] id, x,y,w,h, style, exstyle, helpid [data]
IEDIT params
LISTBOX params
LTEXT params
PUSHBOX params
PUSHBUTTON params
RADIOBUTTON params
RTEXT params
SCROLLBAR params
STATE3 params
USERBUTTON "string", id, x,y,w,h, style, exstyle

params:
["name",] id, x, y, w, h, [data]
["name",] id, x, y, w, h, style [,exstyle] [data]

83

Chapter 4. Programming with Cygwin

["name",] id, x, y, w, h, style, exstyle, helpid [data]

[data] is optional BEG (string|number) [,(string|number)] (etc) END

id FONT memflags "filename"
memflags defaults to MOVEABLE|DISCARDABLE

id ICON memflags "filename"
memflags defaults to MOVEABLE|DISCARDABLE

LANGUAGE num,num

id MENU options BEG items END
items:

"string", id, flags
SEPARATOR
POPUP "string" flags BEG menuitems END

flags:
CHECKED
GRAYED
HELP
INACTIVE
MENUBARBREAK
MENUBREAK

id MENUEX suboptions BEG items END
items:

MENUITEM "string"
MENUITEM "string", id
MENUITEM "string", id, type [,state]
POPUP "string" BEG items END
POPUP "string", id BEG items END
POPUP "string", id, type BEG items END
POPUP "string", id, type, state [,helpid] BEG items END

id MESSAGETABLE memflags "filename"
memflags defaults to MOVEABLE

id RCDATA suboptions BEG (string|number) [,(string|number)] (etc) END

STRINGTABLE suboptions BEG strings END
strings:

id "string"

84

Chapter 4. Programming with Cygwin

id, "string"

(User data)
id id suboptions BEG (string|number) [,(string|number)] (etc) END

id VERSIONINFO stuffs BEG verblocks END
stuffs: FILEVERSION num,num,num,num

PRODUCTVERSION num,num,num,num
FILEFLAGSMASK num
FILEOS num
FILETYPE num
FILESUBTYPE num

verblocks:
BLOCK "StringFileInfo" BEG BLOCK BEG vervals END END
BLOCK "VarFileInfo" BEG BLOCK BEG vertrans END END

vervals: VALUE "foo","bar"
vertrans: VALUE num,num

suboptions:
memflags
CHARACTERISTICS num
LANGUAGE num,num
VERSIONK num

memflags are MOVEABLE/FIXED PURE/IMPURE PRELOAD/LOADONCALL DISCARDABLE

85

Chapter 4. Programming with Cygwin

86

	Cygwin User's Guide
	Table of Contents
	List of Examples
	Chapter 1. Cygwin Overview
	1.1. What is it?
	1.2. Quick Start Guide for those more experienced with Windows
	1.3. Quick Start Guide for those more experienced with UNIX
	1.4. Are the Cygwin tools free software?
	1.5. A brief history of the Cygwin project
	1.6. Highlights of Cygwin Functionality
	1.6.1. Introduction
	1.6.2. Supporting both Windows NT and 9x
	1.6.3. Permissions and Security
	1.6.4. File Access
	1.6.5. Text Mode vs. Binary Mode
	1.6.6. ANSI C Library
	1.6.7. Process Creation
	1.6.8. Signals
	1.6.9. Sockets
	1.6.10. Select

	Chapter 2. Setting Up Cygwin
	2.1. Internet Setup
	2.1.1. Download Source
	2.1.2. Selecting an Install Directory
	2.1.3. Local Package Directory
	2.1.4. Connection Method
	2.1.5. Choosing Mirrors
	2.1.6. Choosing Packages
	2.1.7. Download and Installation Progress
	2.1.8. Icons
	2.1.9. PostInstall Scripts

	2.2. Environment Variables
	2.3. Changing Cygwin's Maximum Memory
	2.4. NT security and the ntsec usage
	2.4.1. NT security
	2.4.2. Process privileges
	2.4.3. File permissions
	2.4.4. New since Cygwin release 1.1
	2.4.5. The mapping leak
	2.4.6. New acl API
	2.4.7. New setuid concept
	2.4.8. New since Cygwin release 1.3.3
	2.4.9. Special values of user and group ids

	2.5. Customizing bash

	Chapter 3. Using Cygwin
	3.1. Mapping path names
	3.1.1. Introduction
	3.1.2. The Cygwin Mount Table
	3.1.3. Additional Pathrelated Information

	3.2. Text and Binary modes
	3.2.1. The Issue
	3.2.2. The default Cygwin behavior
	3.2.3. Example
	3.2.4. Binary or text?
	3.2.5. Programming

	3.3. File permissions
	3.4. Special filenames
	3.4.1. DOS devices
	3.4.2. POSIX devices
	3.4.3. The .exe extension
	3.4.4. The /proc filesystem
	3.4.5. The @pathnames

	3.5. The CYGWIN environment variable
	3.6. Cygwin Utilities
	3.6.1. cygcheck
	3.6.2. cygpath
	3.6.3. dumper
	3.6.4. getfacl
	3.6.5. kill
	3.6.6. mkgroup
	3.6.7. mkpasswd
	3.6.8. mount
	3.6.8.1. Using mount
	3.6.8.2. Cygdrive mount points
	3.6.8.3. Limitations

	3.6.9. passwd
	3.6.10. ps
	3.6.11. regtool
	3.6.12. setfacl
	3.6.13. ssp
	3.6.14. strace
	3.6.15. umount

	3.7. Using Cygwin effectively with Windows
	3.7.1. Pathnames
	3.7.2. Console Programs
	3.7.3. Cygwin and Windows Networking
	3.7.4. The cygutils package
	3.7.5. Creating shortcuts with cygutils
	3.7.6. Printing with cygutils

	Chapter 4. Programming with Cygwin
	4.1. Using GCC with Cygwin
	4.1.1. Console Mode Applications
	4.1.2. GUI Mode Applications

	4.2. Debugging Cygwin Programs
	4.3. Building and Using DLLs
	4.3.1. Building DLLs
	4.3.2. Linking Against DLLs

	4.4. Defining Windows Resources

